
Programming Rubric v1.1

Programmer: Problem: _____ Date Due:

Criteria Exceptionally
well executed (10)

Good, with room for
improvement (8)

Meets minimum
requirement (6)

Pts
(you)

Pts
(me)

D
oc

um
en

ta
tio

n

Assignment: Assignment turned in on time and
neatly with all sections clearly labeled
and stapled together in the correct
order.

Assignment up to 24 hours late but
otherwise turned in correctly.

Assignment up to 72 hours late or
turned in incorrectly.

Specification Problem is clearly defined.
Specification is complete and
appropriately detailed. Given values
and user inputs are explained.

Problem is defined. Specification is
mostly complete, but perhaps not
entirely appropriately detailed. Given
values and user inputs are listed.

Problem definition is deficient in
some way, or specification does not
adequately represent the problem.

Top-Down
Design

Top-down design method followed
and written in appropriate detail.

Top-down method followed, but level
of detail is too vague or too exact.

Top-down design method
attempted, but poorly executed.

Test Cases Clear and well thought out test cases
presented that cover all boundary
conditions and a comprehensive range
of user inputs.

Good test cases, but some boundary
conditions are missing. Range of user
input mostly well thought out.

Little in the way of test cases. One
or more obvious boundary
conditions missing.

So
ur

ce
 C

od
e

Modularization
&

Generalization

Program broken into well thought out
elements that are of an appropriate
length, scope and independence.
Individual elements are written in a
way that actively invites reuse in
other projects.

Code elements are generally well
planned and executed. Some code is
repeated that should be encapsulated.
Individual elements are often, but not
always, written in a way that invites
code reuse.

Code elements exist, but are not
well thought out, are used in a
somewhat arbitrary fashion, or do
not improve program clarity.
Elements are seldom written in a
way that invites code reuse.

Design,
Structure &

Efficiency

Program is designed in a clear and
logical manner. Control structures are
used correctly. The most appropriate
algorithms are implemented.

Program is mostly clear and logical.
Control structures are used correctly.
Reasonable algorithms are
implemented.

Program isn’t as clear or logical as
it should be. Control structures are
occasionally used incorrectly. Steps
that are clearly inefficient are used.

Readability,
Consistency &

Naming

Coding style guidelines are followed
correctly, code is exceptionally easy
to read and maintain. All names are
consistent with regard to style and are
expressive without being verbose.

Coding style guidelines are almost
always followed correctly. Code is
easy to read. Names are consistent in
style and expressive. Isolated cases
may be verbose, overly terse or
ambiguous.

Coding style guidelines are not
followed and/or code is less
readable than it should be. Names
are nearly always consistent, but
occasionally verbose, overly terse,
ambiguous or misleading.

Initial
Comments

Initial comments are complete.
Internal documentation is complete
and well suited to the program

Initial comments are complete but
internal documentation is in some
small fashion inadequate.

Initial comments are incomplete or
internal documentation is
inadequate.

Coding
Comments

Comments clarify meaning where
needed.

Comments usually clarity meaning.
Unhelpful comments may exist.

Comments exist, but are frequently
unhelpful or occasionally
misleading.

E
xe

cu
tio

n

User Interface Screen based instructions and final
output are clear, correct and attractive.
Program is “user friendly” with
informative and consistent prompts
and messages.

Screen based instructions and final
output are mostly clear, correct and
attractive. Program is “user friendly”
with informative and consistent
prompts and messages.

Screen based instructions and final
output are not clear, are not correct
or are not attractive. And/or
Program is not “user friendly.

Robustness Program handles erroneous or
unexpected input gracefully; action is
taken without surprising the user.

All obvious error conditions are
checked for and appropriate action is
taken.

Some obvious error conditions are
checked for and some sort of action
is taken.

Testing &
Correctness

Testing is complete without being
redundant. All boundary cases are
considered, tested and work correctly.

All key items are tested, but testing
may be redundant. Nearly all
boundary cases are considered, tested
and work correctly.

Testing was done, but is not
sufficiently complete. Most
boundary cases are considered,
tested and work correctly.

Degree of
Difficulty

(13 points)

Degree of Difficulty optional challenges can be found at the bottom of program specification sheets. They are optional
in that you can successfully turn in programs without attempting any of them, however completing them represents the
difference between A level work and B level work. Also, doing them generally makes the instructor think that you’re a
really hoopy frood.

Summarize all degree of difficulty bonuses (write “see back” if they are listed on the back)

Total Points (out of 133)

Make sure you look at your specification, pseudo-code, test cases, source-code and testing for additional comments.

