Your Brain on Java—A Learner’s Guide

2nd Edition - Covers Java 5.0

P— VYo B N s P

can change your life

Make Java concepts
stick to your brain

Fool around in
the Java Library

Avoid embarassing
00 mistakes

Bend your mind
around 42
Java puzzles

Make attractive
and useful GUIs

O REILLY* Kathy Sierra & Bert Bates

2 classes objects

A Trip to Objectville

We're going to
Objectvillel We're
leaving this dusty ol’
procedural town for good.
T'll send you a postcard.

| was told there would be objects. in chapter 1, we put all of our code in the
main() method. That’s not exactly object-oriented. In fact, that's not object-oriented at all. Well,
we did use a few objects, like the String arrays for the Phrase-O-Matic, but we didn't actually
develop any of our own object types. So now we've got to leave that procedural world behind,
get the heck out of main(), and start making some objects of our own. We'll look at what makes
object-oriented (OO) development in Java so much fun. We'll look at the difference between

a class and an object. We'll look at how objects can give you a better life (at least the program-
ming part of your life. Not much we can do about your fashion sense). Warning: once you get

to Objectville, you might never go back. Send us a postcard.

27

once upon a time in

Chair Wars

(or How Objects Can Change Your Life)
the spec

nce upon a time in a software shop, two
programmers were given the same spec and told to [
“build it”. The Really Annoying Project Manager
forced the two coders to compete,
by promising that whoever delivers
first gets one of those cool Aeron™
chairs all the Silicon Valley guys have.
Larry, the procedural programmer, and
Brad, the OO guy, both knew this would
be a piece of cake.

Larry, sitting in his cube, thought to
himself, “What are the things this program
has to do? What procedures do we need?”.
And he answered himself , “rotate and
playSound.” So off he went to build the
procedures. After all, what is a program if not
a pile of procedures?

Brad, meanwhile, kicked back at the cafe

and thought to himself, “What are the things
in this program... who are the key players?” He
first thought of The Shapes. Of course, there
were other objects he thought of like the User, the Sound,
and the Clicking event. But he already had a library of code

for those pieces, so he focused on building Shapes. Read ‘\
on to see how Brad and Lar.ry built t}.lelr programs, and the chair
for the answer to your burning question, “So, who got the
Aeron?”
04 4
Inlarry’s cube At Brad’s laptop at the cafe
As he had done a gazillion times before, Larry Brad wrote a class for each of the three shapes
set about writing his Important Procedures. Sauare
He wrote rotate and playSound in no time. :
rotate (shapeNum) { rotate() { Circle
I code to rotate a s
// make the shape rotate 360° } rotate() { Triangle
} Il code to rotate a g
playSound() { } rotate() {
playSound (shapeNum) { Il code to play the A Il code to rotate a triangle
. I/ for a square playSound() { }
// use shapeNum to lookup which } Il code to play the
// AIF sound to play, and play it Il for a circle playSound() {
} Il code to play the AIF file
} /I for a triangle

28

classes objects

Larry thought he’d nailed it. He could almost feel the rolled

steel of the Aeron beneath his...

But wait! There’s been a spec change.

“OK, technically you were first, Larry,” said the Manager, “but we have to add just one
tiny thing to the program. It’ll be no problem for crack programmers like you two.”

“If I had a dime for every time I've heard that one”, thought Larry, knowing that spec-
change-no-problem was a fantasy. “And yet Brad looks strangely serene. What's up with
that?” Still, Larry held tight to his core belief that the OO way, while cute, was just
slow. And that if you wanted to change his mind, you’d have to pry it from his cold,

dead, carpal-tunnelled hands.

Back in Larry’s cube

The rotate procedure would still work; the code used
a lookup table to match a shapeNum to an actual
shape graphic. But playSound would have to change.
And what the heck is a .hif file?

playSound (shapeNum) {
// if the shape is not an amoeba,
// use shapeNum to lookup which
// AIF sound to play, and play it
// else
// play amoeba .hif sound
}
It turned out not to be such a big deal, but it still
made him queasy to touch previously-tested code. Of
all people, he should know that no matter what the
project manager says, the spec always changes.

— what got added to the spec

At Brad’s laptop at the beach

Brad smiled, sipped his margarita, and wrote one
new class. Sometimes the thing he loved most
about OO was that he didn’t have to touch code
he’d already tested and delivered. “Flexibility,
extensibility,...” he mused, reflecting on the
benefits of OO.

Amoeba

rotate() {
I/ code to rotate an amoeba

}

playSound() {
Il code to play the new
I/ hif file for an amoeba

}

29

once upon a time in

Larry snuck in just moments ahead of Brad.

(Hah! So much for that foofy OO nonsense). But the smirk on Larry’s face melted when the

Really Annoying Project Manager said (with that tone of disappointment), “Oh, no, that’s not

how the amoeba is supposed to rotate...”

Turns out, both programmers had written their rotate code like this:
1) determine the rectangle that surrounds the shape /O\
2) calculate the center of that rectangle, and rotate the shape around that point. L)

But the amoeba shape was supposed to rotate around a point on one end, like a clock hand.

“I'm toast.” thought Larry, visualizing charred Wonderbread™. “Although, hmmmm. I could

just add another if/else to the rotate procedure, and then just hard-code the rotation point

code for the amoeba. That probably won’t break anything.” But the little voice at the back of
his head said, “Big Mistake. Do you honestly think the spec won’t change again?”

What the spec conveniently
forgot to mention

Back in Larry’s cube At Brad’s laptop on his lawn
He figured he better add rotation point arguments chair at fhe Telluride Blueqmss FQSfival

to the rotate procedure. A lot of code was affected.
Testing, recompiling, the whole nine yards all over
again. Things that used to work, didn’t.

Without missing a beat, Brad modified the rotate
method, but only in the Amoeba class. He never
touched the tested, working,
rotate (shapeNum, xPt, yPt) { compiled code for the other Amoeba

// if the shape is not an amoeba, parts of the program. To | int xPoint

give the Amoeba a rota- | intyPoint

tion point, he added an rotate() {

attribute that all Amoebas| // code to rotate an amoeba

// calculate the center point

// based on a rectangle,

// then rotate would have. He modi- I using amoeba’s x and y
// else fied, tested, and delivered }

// use the xPt and yPt as (wirelessly) the revised playSound() {

// the rotation point offset program during a single I cgdg {0 play the new

// and then rotate Bela Fleck set. ;/ hif file for an amoeba

30

classes objects

So, Brad the 00 guy got the chair, right?

Not so fast. Larry found a flaw in Brad’s approach. And,
since he was sure that if he got the chair he’d also get Lucy
in accounting, he had to turn this thing around.

LARRY: You've got duplicated code! The rotate

procedure is in all four Shape things.

BRAD: It’s a method, not a procedure. And they’re classes,
not things.

LARRY: Whatever. It’s a stupid design. You have to
maintain four different rotate “methods”. How can that
ever be good?

BRAD: Oh, I guess you didn’t see the final design. Let me
show you how OO inheritance works, Larry.

What Larry wanted .’
(figured the chair would impress her)

L

Square Circle Triangle Amoeba I Iooked at wha’r a" fOUF
rotate() rotate() rotate() rotate() classes have in comwmon.
playSound() playSound() playSound() playSound() u
They’re Shapes, and they all rotate and Shape
playSound. Solabstracted out the otatel) 6
comwon features and put thew into a playSound()
four shape classes to
superclass. | e the new Shape class
playSound() ! : p 4 ,
in a relationship called
inheritance.
You can read this as, “Square inherits from Shape”, Vﬁ R
“Circle inherits from Shape”, and so on. | removed subelasses
rotate() and playSound() from the other shapes, so now / \
there’s only one copy to maintain. - .
Square Circle Triangle Amoeba

The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

31

once upon a time in

What about the Amoeba rotate()?

LARRY: Wasn’t that the whole problem here — that the amoeba shape
had a completely different rotate and playSound procedure?

BRAD: Method.

LARRY: Whatever. How can amoeba do something different if
it “inherits” its functionality from the Shape class? sk me WO

BRAD: That’s the last step. The Amoeba class overrides the
methods of the Shape class. Then at runtime, the JVM knows exactly
which rotate () method to run when someone tells the Amoeba to rotate.

superclass Shape
(wmore abstract)

cride y/
o* R

- rotate() I made the Amoeba class override

playSound() the rotatel) and playSound()
wethods of the superclass Shape.

subclasseg _ Overriding just means that a
(more specific) subclass redefines one of its
\' inherited methods when it needs

rotate() {
/I amoeba-specific
I/ rotate code }

playSound() {
/I amoeba-specific
/I sound code }

LARRY: How do you “tell” an Amoeba to
do something? Don’t you have to call the
procedure, sorry—method, and then tell it
which thing to rotate?

BRAD: That’s the really cool thing about OO.
When it’s time for, say, the triangle to rotate,
the program code invokes (calls) the rotate()
method on the triangle object. The rest of the
program really doesn’t know or care how the O
triangle does it. And when you need to add
something new to the program, you just write
a new class for the new object type, so the new
objects will have their own behavior.

T know how a Shape is
supposed to behave. Your
job is to tell me what to

mer head about how I do it.

32

do, and my job is to make it happen.
Don't you worry your little program-

Square Circle Triangle Amoeba to change or extend the behavior
of that method.

Overriding methods
& ‘

T can take
care of myself.
T know how an Amoeba
is supposed to rotate

and play a sound.

The suspense is killing we.
Who got the ¢hair?

Amy from the second floor.

(unbeknownst to all, the Project

Manager had given the spec to
three programmers.)

What do you like about 007

"It helps me design in a more natural way. Things
have a way of evolving.”
-Joy, 27, software architect

“Not messing around with code I've already
tested, just to add a new feature."
-Brad, 32, programmer

“T like that the data and the methods that oper-
ate on that data are together in one class.”
-Josh, 22, beer drinker

“Reusing code in other applications. When I write
a new class, I can make it flexible enough to be
used in something new, later.”

-Chris, 39, project manager

T can't believe Chris just said that. He hasn't
written a line of code in 5 years."

-Daryl, 44, works for Chris

“Besides the chair?"
-Amy, 34, programmer

classes objects

.@ﬁa RALN
ToawEeEwR
Time to pump some neurons.

You just read a story bout a procedural
programmer going head-to-head with an OO
programmer.You got a quick overview of some
key OO concepts including classes, methods, and
attributes. We'll spend the rest of the chapter
looking at classes and objects (we'll return to
inheritance and overriding in later chapters).

Based on what you've seen so far (and what you
may know from a previous OO language you've
worked with), take a moment to think about
these questions:

What are the fundamental things you need to
think about when you design a Java class? What
are the questions you need to ask yourself?

If you could design a checklist to use when
you're designing a class, what would be on the
checklist?

metacognitive tip

If you're stuck on an exercise, try talking about

it out loud. Speaking (and hearing) activates

a different part of your brain. Although it

works best if you have another person to

discuss it with, pets work too. That's how
our dog learned polymorphism.

33

thinking about objects

When you design a class, think about the objects that
will be created from that class type. Think about:

B things the object knows
B things the object does

ShoppingCart Button
cartContents knows I(?:lilr knows
setColor()
addToCart() does setLabel() does
removeFromCart() dePress()
checkOut() unDepress()
Things an object knows about itself are called
W instance variables instance
variables
(state)
Things an object can do are called methods
(behavior)

B methods

Things an object knows about itself are called instance
variables. They represent an object’s state (the data), and
can have unique values for each object of that type.

Think of instance as another way of saying object.

Things an object can do are called methods. When you
design a class, you think about the data an object will need
to know about itself, and you also design the methods

that operate on that data. It’s common for an object to
have methods that read or write the values of the instance
variables. For example, Alarm objects have an instance
variable to hold the alarmTime, and two methods for
getting and setting the alarmTime.

So objects have instance variables and methods, but those
instance variables and methods are designed as part of the
class.

34

@ harpen our pencil
S y

Fill in what a television object
might need to know and do.

Alarm
alarmTime
alarmMode k"ows
setAlarmTime()
getAlarmTime() | d0@$
isAlarmSet()
snooze()
Song
title
e knows
setTitle()
setArtist() does
play()

Television

instance
variables

methods

7 inheritance and polymorphism

We were underpaid,

Better LiVi ng in overworked coders 'till we

tried the Polymorphism Plan. But

o bj ectVi I Ie thanks to the Plan, our future is

bright. Yours can be tool

Plan your programs with the future in mind. ifthere were a way to wiite
Java code such that you could take mare vacations, how much would it be worth to you? What
if you could write code that someone efse could extend, easily? And if you could write code
that was flexible, for those pesky last-minute spec changes, would that be something you're
interested in? Then this Is your lucky day. For just three easy payments of 60 minutes time, you
can have all this, When you get on the Polymorphism Plan, you'll learn the 5 steps to better class
design, the 3 tricks to polymorphism, the 8 ways 10 make flexible code, and if you act now—a
bonus lesson on the 4 tips for exploiting inheritance. Don'’t delay, an offer this good will give
you the design freedom and programming flexibllity you deserve. It’s quick, it's easy, and it's

available now, Start today, and we'll throw In an extra level of abstraction!

this is a new chapter 16!

the power of inheritance

Chair Wars Revisited...

Remember way back in chapter 2, when Larry (procedural guy)
and Brad (0O guy) were vying for the Aeron chair? Let’s look at
a few pieces of that story to review the basics of inheritance.
LARRY: You've got duplicated code! The rotate procedure
is in all four Shape things. It’s a stupid design. You have to
maintain four different rotate “methods”. How can that
ever be good?

BRAD: Oh, I guess you didn't see the final design. Let me
show you how OO inheritance works, Larry.

Square Amoeba

| looked at what all four

rotata() rotate() classes have In sommon.
playSound() playSound()

«

They’re Shapes, and they all rotate and
playSound. So | abstracted out the
common features and put them into a
new ¢lass called Shape. —

rotats()
playSound()

3

Then ! linked the other
four shape elasses to
the new Shape class,
in a relationship called
Inheritance.

superelass

You can read this as, “Square inherits from Shape”,
“Clrcle Inherits from Shape”, and 50 on. | removed

rotate() and playSound() froam the other shapes, so now /
thera's only one copy to maintain.

suboiasses

AN

Triangle

Square Circle

The-Shape class Is called the suparclass of the other four
ctagsas. The other four are the subclasses of Shape. The
subclasses Inherit the methods of the superclass. In othar
worgs, if the Shape class has the functionality, then the
subclasses aulomatically get thet same functionslity.

168 chapter 7

inheritance and polymorphism

What about the Amoeba rotatel)?

LARRY: Wasn’t that the whole problem here — that the amoeba shape
had a completely different rotate and playSound procedure?

How can amoeba do something different if it inherits its
functionality from the Shape class?

BRAD: That’s the last step. The Amoeba class overrides the
methods of the Shape class. Then at runtime, the JVM knows
exactly which rotate() method to run when someone tells the
Amoeba to rotate.

superolass
(wore abstract)

=~

rotate()

playSound() [made the Amoeba class override the

rotate(} and playSound() methods
of the superciass Shape. Overriding
Just means that a subelass redefines
one of s inherlted methods when
It needs to change or extend the
behavtor of that method.

subelasses
Imore speolfic)

\ Square : Circle Triangle Amosba

rotate()
/i amoeba-specific
/ rotate code

playSound()
I/ amoeba-specific
/1 sound code

Overriding methods
75 9

RANN
QWEWwR

How would you represent a house cat and a tiger, in an
inheritance structure. Is a domestic cat a specialized
version of a tiger? Which would be the subclass and
which would be the superciass? Or are they both
subclasses to some other class?

0o

How would you design an Inheritance structure? What
methods would be overridden?

Think about it. Before you turn the page.

you are herey 167

s way inheritance works

1 chapter 7

Understanding Inheritance

When you design with inheritance, you put common code in
a class and then tell other more specific classes that the
common (more abstract) class is their superclass. When one
class inherits from another, the subclass inherits from the
superclass.

In Java, we say that the subclass extends the superclass.
An inheritance relatonship means that the subclass inherits
the members of the superclass, When we say “members of
a class” we mean the instance variables and methods.

For example, if PantherMan is a subclass of SuperHero, the
PantherMan class automaducally inherits the instance vanables
and methods common to all superheroes including suit,
tights, specialPower, useSpecialPower () and
30 on. But the PantherMan subclass can add new
methods and instance variables of its own, and it can
override the methods it inherits from the superclass
SuperHero.

superolass
(woreabstract) fsut instance varlables
2 | spociapower (state, attributes)
useSpeciatPower() . methods
putOnSuit() {behavior)
subclasses
(wore specifle)
\é, FriedEggMan PantharMan Overriding
T useSpaclalPower() methods

“

‘putOnSuit()

—

Y FriedEggMan doesn’t need any behavior that’s unique,

/&, o he doesn’t override any methods. The methods and
@& instance variables in SuperHero are sufficient.

PantherMan, though, has specific requirements for his suit
and special powers, so ugeSpecialPower () and
petonsuit () are both overridden in the PantherMan
class.

Instance variables are not overridden because they
don'’t need 1o be. They don't define any special behavior, so a
subclass can give an inherited instance variable any value it
chooses. PantherMan can set his inhenited tights (o
purple, while FriedEggMan sets his to white.

An Inheritance example:

public class Doctor {
boolean worksAtHospital;
void treatPatient () |

// perform a checkup

)

public¢c ¢class FamilyDoctor extends Doctor ({

boolean makesHouseCalls;
void giveAdvice() {

// give homespun advice
}

)

public ¢lags Surgeon extends Doctor{

void treatPatient () ({
// perform surgery
)

void makeIncision() {
// make incision (yikes!)
)

inheritance and polymorphism

I inherited my
pracedures so I didn't
bother with medical school.
_ Refax, this won't hurt a bit.
(now where did I put that
power saw..)

superclass

worksAtHospital

| treatPatient ()

one nstanee variabie

one method

your pencil —

How many instanca variables does
Surgeon have?

How many instance variables does
FamilyDoctor hava?

How many methads does Doctor have?

Adds one new method | makelncision(}

subslasses How many methods does Surgeon have? ____
surgoon FamiyDoctr How many methods does FamilyDoctor
- . Adds one new have?
Overrides the Inherited makesHouseCalls instance varable
treatPatient() method | treatPatient () Can a FamilyDoctor do treatPatient()? ______
giveAdvics () Adds one new method

Can 3 FamilyDoctor do makelncision()?

169

you are here »

Let’s design the inheritance tree for
an Animal simulation program

Imagine you're asked to design a simulation program that
lets the user throw a bunch of different animals into an
environment to see what happens. We don’t have to code the
thing now, we’re mostly interested in the design.

We've been given a list of some of the animals that will be
in the program, but not all. We know that each animal will
be represented by an object, and that the objects will move
around in the environment, doing whatever it is that each
particular type is programmed to do.

And we want other programmers to be able to add new
kinds of animals to the program at any time.
First we have 1o figure out the common, abstract

characteristics that all animals have, and build those
characteristics into a class that all animal classes can extend.

o Look for objects that have common
attributes and behaviors.

What do these six types have In
common? This helps you to abstract
out behaviors. (step 2)

How are these types related? This
helps you to define the inheritance
tree relationships (step 4-5)

170 chapter 7

Using inheritance to avoid
duplicating code in subclasses

We have five instance variables:
picture ~ the file name representing the JPEG of this animal

food — the type of food this animal eats. Right now, there
can be only two values: meat or grass.

hunger — an int representing the hunger level of the animal.
It changes depending on when (and how much) the
animal eats.

boundaries — values representing the height and width of
the ‘space’ (for example, 640 x 480) that the animals will
roam around in.

location ~ the X and Y coordinates for where the animal is
in the space.

We have four methods:

makeNoise () — bebhavior for when the animal is supposed to
make noise.

eat() — behavior for when the animal encounters its
preferred food source, meat or grass.

sleep() — behavior for when the animal is considered asleep.

roam() - behavior for when the animal is not eating or
sleeping (probably just wandering around waiting to bump
into a food source or a boundary).

Lion

inheritance and polymorphism

2

Design a class that represents
the common state and behavior.

These objects are all animals, so
we'll make a common superclass
called Animal.

we'll put in methods and instance
variables that all animals might
need.

Animal

picture
food
hunger
boundaries
location

makeNoise()
eat()

sleep()
roamy()

Wolf

Cat

you are here» 171

designing for inheritance

Po all animals eat the same way?

Assume that we all agree on one thing: the instance
variables will work for all Animal types. A lion will
have his own value for picture, food (we're thinking
meat), hunger, boundaries, and location. A hippo
will have different values for hig instance variables,
but he’ll stiil have the same variables that the other
Animal types have. Same with dog, tiger, and so on.

Decide if a subclass
needs behaviors (method

But what about behavior

Which methods should we override?

Does a lion make the same noise as a dog? Does
a cat eat like a hippo? Maybe in your version, but

in ours, eating and making noise are Animal-type-

specific. We can'’t figure out how to code those
methods in such a way that they’d work for any
animal. OK, that’s not true. We could write the

makeNoise () method, for example, so that all it does
is play a sound file defined in an instance variable
for that type, but that's not very specialized. Some

animals might make different noises
for different situations (like one
for eating, and another when
bumping into an enemy, etc.)

So just as with the Amoeba

overriding the Shape class rotate()
method, to get more amoeba-specific (in
other words, unique) behavior, we’ll have
to do the same for our Animal subclasses.

Animal

picture
food

hunger
boundaries
location

172 chapter7

I'm ore bad™ss
plant-eater.

implementations) that are specific
to that particular subclass type.

Looking at the Animal class,

we decide that eat() and
makeNoise() should be overridden
by the individual subclasses.

In the dog
community, barking is an

important part of our cultural
identity. We have a unique sound,
and we want that diversity to
be recognized and respected.

these two methods, eat0)

We bCHZC" aven"ldt

and makeNoise(), s Lhat eath animal Lype Lan

. ye &on
ine i cL‘-G‘f. behavior for eating 3
e o, i locks fee sleef) and

voaml) &3n SQY W;L'

Looking for wore inheritance

opporfunities

The class hierarchy is starting to shape up. We

have each subclass override the makeNoise() and
eal() methods, so that there’s no mistaking a Dog

bark from a Cat meow (quite insulting to both
parties). And a Hippo won't eat like a Lion.

But perhaps there’s more we can do. We have to
look at the subclasses of Animal, and see if two
or more can be grouped together in some way,
and given code that’s common 10 only that new

group. Wolf and Dog have similarities. So do

Lion, Tiger, and Cat.

Lion

makeNoise()
eat()

Hippo

makeNoise()
oat()

inheritance and polymorphism

o

Look for more opportunities to use

abstraction, by finding two or more
subclasses that might need common
behavior.

We look at our classes and see

that Wolf and Dog might have some
behavior In common, and the same goes
for Lion, Tiger, and Cat,

Animal

picture
food
hunger
boundaries
location

Tiger

roamy() Wolf ang D

c u| makeNoise()
| eat()

1

-
9 makeNoise()

makeNolse()

eat()

oal()

imakeNoise()
eat()

you are here » 173

designing for inheritance

e Finish the class hierarchy

Since animals already have an organizational Animal
hierarchy (the whole kingdom, genus, phylum

thing), we can use the level that makes the most picture

sense for class design. We'll use the bialogical food
“families” to organize the animals by making a hunger
Feline class and a Canine class. boundaries

We decide that Canines could use a common location

roam() method, because they tend to move in
packs. We also see that Felines could use a
common roam() method, because they tend to
avoid others of their own kind. We‘Ir let Hippo
continue to use its inherited roam() method—
the generic one it gets from Animal.

S0 we're done with the design for now: we'll
come back to it later in the chapter.

slaep()

Fellne

Canline

roam()

Hippo
roamy()

makeNolse()
aay()

makeNolse()
eat()

Tiger

makeNoise()
eat()

i | makeNalsa() Wolf

makeNolse()

makeNoisa() |
eat()

' =

174 chapter?7

inheritance and polymorphism

Which method is ¢alled?

The Wolf class has four methods. One
inherited from Animal, one inherited from
Canine (which is actually an overridden
version of a method in class Animal}, and
two overridden in the Wolf class. When
you create a Wolf object and assign it to

a variable, you can use the dot operator

on that reference vaniable to invoke all
four methods. But which version of those
methods gets called?

makeNoisa()
eat()

slsep()
roam()

make 3 new Wolf objct{: Wolf w = new Wolf ()

ealls the version in Wolf w.makeNoise (};
¢alls the version in Canine w.roam() ;

talls the vevsion in Wolf w.eat();

calls the version in Animal w.sleep();

When you call 2 method on an object
reference, you're calling the most specific
version of the method for that object type.

In other words, the lowest one wins!

“Lowest” meaning lowest op the
inheritance tree. Canine is lower than

Animal, and Wolf is lower than Canine, ‘
so invoking a method on a reference 21 '
to a Wolf object means the JVM starts ‘

looking first in the Wolf class. If the [VM
doesn’t ind a version of the method in
the Wolf class, it starts walking back up
the inheritance hierarchy until it finds a
match.

makeNoisa()
eat()

you are here* 175

practice designing an inheritance tree

Designing an Inheritance Tree

superclass

(wore abstract) |
Class Superslasses Subclasses ~3 L
Clothing — Boxers, Shirt subslasses fD\

(more spesifie)
Boxers Clothing more pes
Shirt Clothing Boxers Shirt
Inharitance Table

Sharpen your pencil

Find the relationships that make sense. Fill in the last two columns

Class Superclasses

Subelasses

Musician

Rock Star

Fan

Bass Player

Concert Pianist

Hint: not avarything can be connected 10 something ofse.
Hint: you're allowed to add to or change the classes listed.

{nheritance Class Diagram

Draw an inheritance diagram here.

Ot Ghestions

Q.' You said that the JVM starts
walking up the inheritance tree,
starting at the class type you invoked
the method on (like the Wolf example
on the pravious page). But what
happens if the JVM doesn’t ever find
a match?

176 chapter?

A: Good question! But you don't
have to worry about that. The compiler
guarantees that a particular method

is callable for a specific reference type,
bat it doesn't say (or care) from which
class that method actually comes from
at runtime.With the Wolf example, the
compiler checks for a sleep() methad,
but doesn't care that sleep(Is actually
defined In (and inherited from) class
Animal. Remember that if a class
Inherits a method, it has the method.

Where the inherited method Is defined
(in other words, In which superclass

it Is defined) makes no difference to
the compller. But at runtime, the JVM
will always pick the right one_And
the right one means, the most specific
version for that particular object.

Inheritance and polymorphism

Using 1S-A and HAS-A

Remember that when one class
inherits from another, we say that the
subclass extends the superclass. When
you want to know if one thing should
extend another, apply the IS-A test.

Triangle IS-A Shape, yeah, that works.
Cat IS-A Feline, that works too.
Surgeon IS-A Doctor, still good.

Does it make sense %o
say a Tub I5-A Bathroom? Or a
Bathroom IS-A Tub? Well it doesn't to
me. The relationship between my Tub
and my Bathroom is HAS-A. Bathroom
HAS-A Tub. That means Bathroom
has a Tub instance variable.

Tub extends Bathroom, sounds
reasonable.
Until you apply the IS-A lest.

To know if you’ve designed your types
correctly, ask, “Does it make sense to
say type X IS-A type Y?” If it doesn’t,
you know there’s something wrong
with the design, so if we apply the IS-A
test, Tub IS-A Bathroom is definitely
false.

What if we reverse it to Bathroom
extends Tub? That stll doesn't work,
Bathroom IS-A Tub doesn’t work.

Tub and Bathroom arerelated, but
not through inheritance. Tub and
Bathroom are joined by a HAS-A
relationship. Does it make sense to
say “Bathroom HAS-A Tub™? If yes,
then it means that Bathroom has a
Tub instance variable. In other words,
Bathroom has a reference to a Tub, but
Bathroom does not extend Tub and
vice-versa,

Int size;
Bubbles b;

Tub bathtub;
Sink theSink;

int radius;
Int colorAmt;

Bathroom HAS-A Tub and Tub HAS-A Bubbtes.
Bul nobody Inherlts from (extends) anybody else.

you are here» 177

exploiting the power of objects

178 chaptar 7

But wait! There’s more!

The IS-A test works enywherein the inheritance tree. If your
mheritance tree is well-designed, the IS-A test should make
sense when you ask any subclass if it IS-A any of its supertypes.

if class B extends class A, class B 1S-A class A.

This is true anywhere in the inheritance tree. If
class C extends class B, class C passes the IS-A
test for both B and A.

Canine extends Animal
Wolf extends Canine
Wolf extends Animal

Canine 1S-A Animal
Wolf IS-A Canine
Wolf IS-A Animal

makeNoise()
eat()

| sleep()

roam()

makeNoisa()
aat()

With an inheritance tree like the
one shown here, you're always
allowed to say “Wolf extends
Animal” or “Wolf IS-A Animal”.
It makes no difference if Animal
is the superclass of the superclass
of Wolf. In fact, as long as Animal
is somewhere in the inheritance
hierarchy above Wolf, Wolf IS-A
Animal will always be true.

The structure of the Animal
inheritance tree says to the world:

“Wolf IS-A Canine, so Wolf can do
anything a Canine can do. And
Wolf IS-A Animal, so Wolf can do
anything an Animal can do.”

It makes no difference if Wolf
overrides some of the methods
in Animal or Canine. As far as
the world (of other code) is
concerned, a Wolf can do those
four methods. How he does them,
or in which class they're overridden
makes no difference. A Wolf can
makeNoise (), eat(), sleep(), and
roam() because a Wolf extends
from class Animal.

How do you know if you've got

your inheritance right?

There’s obviously more to it than what we’ve
covered so far, but we'll look at a lot more OO
issues in the next chapter (where we eventually
refine and improve on some of the design work
we did in ¢his chapter).

For now, though, a good guideline is to use the
IS-A test. If “X IS-AY” makes sense, both classes
(X and Y) should probably live in the same
inheritance hierarchy. Chances are, they have
the same or overlapping behaviors.

Keep in mind that the
inheritance 1S-A relationship
works in only one direction!

Triangle IS-A Shape makes sense, so you can
have Triangle extend Shape.

But the reverse—Shape IS-A Triangle—does
not make sense, so Shape should not extend
Triangle. Remember that the 1S-A relavonship
implies that if X ISAY, then X ¢an do anything
aY can do (and possibly more).

inheritance and polymorphism

Beer

| oK, your Nm,M?:\;f 0'
| way-ness F e rmus
\ v): oxtends VX154

Sharpen Your pentil ————

Put a check next to the relationships that
make sense.

[] Oven extends Kiichen

(] Gultar extends Instrument
(] Person extends Employee
(] Ferrari extends Engline

O] FriedEgg extends Food
L] Beagle extends Pet

] Container extends Jar

[J Metal extends Titanlum
[] GratefulDead extends Band
[] Blonde extends Smart

(] Beverage extends Martini

HinL apply the 1S-A test

you are here» 179

who inherits what

thes
Dumb Questions

Q: So we see how a subclass gets
to inherit a superclass method, but
what if the superclass wants to use
the subclass version of the method?

A: A superclass won't necessarily

Q: In a subclass, what if | want to
use BOTH the superclass version and
my overriding subclass version of a
method? In other words, | don’t want
to completely replace the superclass
version, | just want to add more stuff
to it.

You can design your superclass
methods in such a way that they
contain method implementations

that will work for any subclass, even
though the subclasses may still need
to ‘append’ more code. In your subclass

know about any of its subclasses.

You might write a class and much

later someone else comes along and
extends it. But even if the superclass
creator does know about (and wants
to use) a subclass version of a method,
there’s no sort of reverse or backwards
inheritance. Think about it, children
inherit from parents, not the other way
around.

superclass”

A: You can do this! And it's an
important design feature. Think of the
word “extends” as meaning,”l want

to extend the functionality of the

public void roam() {
super.roam () ;
// my own roam stuff Y

overriding method, you can call the
superclass version using the keyword
super. It’s like saying, “first go run the
superclass version, then come back and
finish with my own code...”

this ealls £he inhevrited version of
roarn(), then tomes back Lo do
our owWn subdass-—s?ccij;ic tode

Who gets the Porsche, who gets the porcelain?
thow to know what a subclass san /R
[nhertt from its superclass)

A subclass inherits members of the
superclass. Members include instance
variables and methods, although later in

this boak we’ll look at other inherited members. A
superclass can choose whether or not it wans a
subclass to inherit a particular member by the level of
access the particular member is given.

There are four access Jevels that we’ll cover in this book,
Moving from most restrictive 10 least, the four access
levels are:

private default protected public

180 chapter?

Access levels control who sees what, and are crucial
10 having well-designed, robust Java code. For now we’ll
focus just on public and private. The rules are simple for
those two:

public members are inherited
private members are not inherited

When a subclass inherits a member, it is as if the
subclass defined the member itself. In the Shape
cxample, Square inherited the rotate {) and
playSound () methods and 10 the outside world (other
code) the Square class simply fas a rotate () and
playSound () method.

The members of a class include the variables and
mecthods defined in the class plus anything inherited
from a superclass.

Note: get more details about default and protected in chapter
|& (chlo\fncnU and appendix B.

When designing with inheritance,
are you USIng or abusing?

Although some of the reasons behind these rules won’t be
revealed undl later in this book, for now, simply knowinga
few rules will help you build a better inheritance design.

DO use inheritance when one class is a more specific type
of a superclass. Example: Willow is a more specific type of
Tree, so Willow extends Tree makes sense.

DO consider inheritance when you have behavior
(implemented code) that should be shared among
multiple classes of the same general type. Example:
Square, Circle, and Triangle all need to rotate and play
sound, so putdng that functionality in a superclass Shape
might make sense, and makes for easier maintenance and
extensibility. Be aware, however, that while inheritance is
one of the key features of object-oriented programming,
it's not necessarily the best way to achieve behavior reuse.
It'll get you started, and often it’s the right design choice,
but design patterns will help you see other more subtle
and flexible options. If you don’t know about design
patterns, a good follow-on to this book would be Head First
Design Patterns.

DO NOT use inheritance just so that you can reuse

code from another class, if the relationship between the
superclass and subclass viclate either of the above two
rules. For example, imagine you wrote special printing
code in the Alarm class and now you need printing code
in the Piano class, so you have Piano extend Alarm so that
Piano inherits the printing code. That makes no sense! A
Piano s not a more specific type of Alarm. (So the printing
code should be in a Printer class, that all printable objects
can take advantage of via a HAS-A relationship.)

DO NOT use inheritance if the subclass and superclass
do not pass the IS-A test. Always ask yourself if the subclass
IS-A more specific type of the superclass, Example: Tea IS-
A Beverage makes sense. Beverage IS-A Tea does not.

inheritance and polymorphism

2 _
—— BULLET POIM& —_—

Asubclass extends a superclass.

A subclass inherits all pubfic instance
variables and methods of the superclass, but
does not inherit the private instance variables
and methods of the superciass.

Inherited methods can be overridden; instance
variables cannof be overidden (aithough they
can be redefined in the subclass, but that's
not the same thing, and there's almost never a
nesd to do it)

Use the 1S-A test to verify that your
inheritance hierarehy is valig. if X extends Y,
then X /S-A Y must make sense.

The [S-A relationghip works in only one
direction. A Hippo Is an Anlmal, but nat all
Animals are Hippos.

When a method is overridden in a subclass,
and that method is Invoked on an instance of
the subclass, the overridden version of the
method is called. {The lowest one wins.)

If class B extends A, and C extends B, class
B IS-A class A, and class C IS-A class B, and
class C also 1S-A class A.

you are herey 181

exploiting the power of objects

So what does all this
inheritance really buy you?

You get a lot of OO mileage by designing
with inheritance. You can get rid of duplicate
code by abstracting out the behavior common
to a group of classes, and sticking that code
10 a superclass. That way, when you need to
modify it, you have only one place to update,
and the change is magically reflected in all the
classes that inherit that behavior. Well, there's
no magic involved, but it is pretty simple:
make the change and compile the class
again. That's it. You don’t have to touch the
subclasses!

Just deliver the newly<changed superclass, and
all classes that extend it will automatically use
the new version.

A Java program is nothing but a pile of classes,
30 the subclasses don't have to be recompiled
in order to use the new version of the
superclass. As long as the superclass doesn’t
break anything for the subclass, everything’s
fine. (We’ll discuss what the word ‘break’
means in this context, later in the book. For
now, think of it as modifying something in
the superclass that the subclass is depending
on, like a particular method’s arguments or
return type, or method name, etc.)

182 chapter 7

@ You avoid duplicate
code.
Put common code in one piace, and let
the subclasses inherit that code froma
superclass. When you want to change that
behavior, you have o modify it in only
one place, and everybody else (i.e. all the
subclasses) see the change,

@® You define a common
protocol for a group of
classes.

Um, what
the heck does
THAT mean?

Inheritance lets you guarantee that
all classes grouped under a certain
supertype have all the methods that
the supertype has.”

In other words, you define a common protosol for a
set of classes related through Inheritanee.

When you define methods in a superclass, that can be
inherited by subclasses, you’'re announcing a kind of
protocol to other code that says, “All my subtypes (i.e.
subclasses) can do these things, with these methods
that look like this...”

In other words, you establish a contract.

Class Animal establishes a common protocol for all
Animal subtypes:

Youre telling the world {;\sa{:
Pnimal £3n do these Towr

maketolse()

Sea B . That inthdes the methed
sleep() ks and vebum types-
roam() Jrguments 3

And remember, when we say any Animal, we mean
Animal and any class that extends from Animal Which
again means, any class that has Animal somewhere above it
in the inheritance hierarchy.

But we're not even at the really cool part yet, because
we saved the best—polymorphism—for last.

When you define a supertype for a group of classes,
any subclass of that supertype can be substituted where the
supertype is expected.

Say, what?

Don’t worry, we're nowhere near done explaining it.
Two pages from now, you'll be an expert

"When we say “all the mathods” we mean “all the /inherifable methods®, which
for now actually means, “all the public methods®, although later we'il refine that
gefinition a bt more.

inheritance and polymorphism

And 1 care because...

Because you get to take advantage of
polymorphism.

Which matters to me
because...

Because you get to refer to a subclass
object using a reference declared as the

supertype.

And that means to me...

You get to write really flexible code.
Code that’s cleaner (more efficient,
simpler). Code that'’s not just easier to
develop, but also much, much easier to
extend, in ways you never imagined at
the time you originally wrote your code.

That means you can take that tropical
vacation while your co-workers update
the program, and your co-workers might
not even need your source code.

You'll see how it works on the next page.

We don't know about you, but
personally, we find the whole
tropical vacation thing
particularly motivating.

<P

you are here» 183

Keeping the contract: rules for overriding

When you override a method from a superclass, you're agreeing to
fulfill the contract. The contract that says, for example, “I take no
arguments and I return a boolean.” In other words, the arguments
and rerurn types of your overriding method must look to the outside
world exactly like the overridden method in the superclass.

The methods are the contract.

If polymorphism is going to work, the Toaster’s version of the
overridden method from Appliance has to work at runtime.
Remember, the compiler looks at the reference type to decide
whether you can call a particular method on that reference. With

an Appliance reference to a Toaster, the compiler cares only if class
Appliance has the method you're invoking on an Appliance reference.
But at runtime, the JVM looks not at the reference type (Appliance) but
at the actual Toaster object on the heap. So if the compiler has already
approved the method call, the only way it can work is if the overriding
method has the same arguments and return types. Otherwise,
someone with an Appliance reference will call turnOn() as a no-

arg method, even though there’s a version in Toaster that takes an
int. Which one is called at runtime? The one in Appliance. In other
words, the ionOn(int level) method in Toaster is not an override!

Q Arguments must be the same, and return
types must be compatible.

The contract of superclass defines how other ¢ode can use a method.
Whatever the superclass takes as an argument, the subctass over-
riding the method must use that same argument. And whatever the
superclass declares as a return type, the overriding method must de-
clare either the same type, or a subclass type. Rermember, a subclass
object is guaranteed 1o be able to do anything its superclass declares,
30 it's safe to return a subclass where the superclass Is expected.

The method can’t be less accessible.

That means the access level must be the same, or friendlier. That
means you can't, for example, override a public mathod and make
it private. What a shock that would be to the cods invoking what it

T

This i NOT an
oim.\del'

Appliance

boalean tumOn()
boatean tumOft()

Toaster

boolean tumOn(int level)

Y a3 legal
“{'-Mfﬁjn

overl OAD,
overR {DE

Appliance

public boolean tumOn()
public boolean turnOn()

thinks (at compile time) is a public method, if suddenly at runtime T L,EQN’!
the JVM slammed the door shut because the overriding version NO —\4 Toaster i’
called at runtime is private! s not 3 \esalu o
So far we've leamed about two access levels: private and public. °“‘W'.de df\\c attess |private boolean tumOn{)
The other two are In the deployment chapter (Release your Code) "C‘b“% ik o lead!
and appendix B. There's alsa another rule about overriding related level a;\D; petavst
to exception handiing, but we'll wait until the chapter on exceptions ~ o¥€¥ Ldn b £hangt
(Risky Behavlor) to cover that. you dio®
argumen

190 chapter7

objects are Objects

214

Object

equals()
getClass()
hashCode()
toString()

|

Snowboard

equals()
getClass()
hashCode()
toString()

turn()
shred()
getAir()
loseControl()

He treats me like an

Object. But I can do so
much more...if only he'd see
me for what I really am.

Get in touch with your inner Object.

An object contains everything it inherits from each of its
superclasses. That means every object—regardless of its
actual class type—is also an instance of class Object. That
means any object in Java can be treated not just as a Dog,
Button, or Snowboard, but also as an Object. When you
say new Snowboard (), you get a single object on the
heap—a Snowboard object—but that Snowboard wraps
itself around an inner core representing the Object
(capital “O”) portion of itself.

A single objeet
on {:hc hca‘g.

Showboard inherits methods
Lrom superelass Ob\)e(.{:, and
adds four more.

Snowboard

S e
720 Wboard oo

Theve is onl\/ ONE objcd: on the heap heve. A Snowboard
ob\)cé{. But it contains both the Snowboard elass parts of
itself and the Object tlass parts of itself.

‘Polymorphism’ means
‘many forms’.

You can treat a Showboard as a
Snowboard or as an Object.

If a reference is like a remote control, the
remote control takes on more and more buttons
as you move down the inheritance tree. A
remote control (reference) of type Object has
only a few buttons—the buttons for the exposed
methods of class Object. But a remote control
of type Snowboard includes all the buttons from
class Object, plus any new buttons (for new
methods) of class Snowboard. The more specific
the class, the more buttons it may have.

Of course that’s not always true; a subclass might
not add any new methods, but simply override
the methods of its superclass. The key point is
that even if the object is of type Snowboard, an
Object reference to the Snowboard object can’t see
the Snowboard-specific methods.

Snowboard S_= new Snowboard() ;

Object O = s;

The Snowboard remote tontrol
(rc("crcmc) has move buttons than
an 053::1{ vemote tontrol. The o
Showboard remote tan see the ‘cu“

interfaces and

When you put

an object in an
ArraylList<Object>, you
can treat it only as an
Object, regardless of
the type it was when
you put it in.

When you get a
reference from an
ArraylList<Object>, the
reference is always of
type Object.

That means you get an
Object remote control.

fewer methods heve...

Snowboard

S e
OOWbo ad oo¥

Snowboardness of the Snowboard
objcdf [t ean aeeess all the methods
in Snowboard, im‘,luding both the
inherited Object methods and the
methods from class Snowboard.

The Ob\)cc{: vefevente can see _gl_\! the
Ob\)cc{ ?a\r‘ts o£ the Snowboard ob\')cc{',.
[t can actess only the methods of elass

Objcc{:~ [t has fewer buttons than the
Showboard \rtmo‘tc Con{',rol.

215

modifying a class tree

218

What if you need to change
the contract?

OK, pretend you’re a Dog. Your Dog class
isn’t the only contract that defines who you
are. Remember, you inherit accessible (which
usually means public) methods from all of
your superclasses.

True, your Dog class defines a contract.
But not all of your contract.

Everything in class Canine is part of your
contract.

Everything in class Animal is part of your
contract.

Everything in class Object is part of your
contract.

According to the IS-A test, you are each of
those things—Canine, Animal, and Object.

But what if the person who designed your
class had in mind the Animal simulation
program, and now he wants to use you (class
Dog) for a Science Fair Tutorial on Animal
objects.

That’s OK, you’re probably reusable for that.

But what if later he wants to use you for a
PetShop program? You don’t have any Pet
behaviors. A Pet needs methods like beFriendly()

and play().

OK, now pretend you’re the Dog class
programmer. No problem, right? Just add
some more methods to the Dog class. You
won’t be breaking anyone else’s code by
adding methods, since you aren’t touching
the existing methods that someone else’s code
might be calling on Dog objects.

Can you see any drawbacks to that approach
(adding Pet methods to the Dog class)?

_@?RA"«
ToOaWwWE®R

Think about what YOU would do if YOU were
the Dog class programmer and needed to
modify the Dog so that it could do Pet things,
too. We know that simply adding new Pet be-
haviors (methods) to the Dog class will work,
and won't break anyone else's code.

But... this is a PetShop program. It has more
than just Dogs! And what if someone wants
to use your Dog class for a program that has
wild Dogs? What do you think your options
might be, and without worrying about how
Java handles things, just try to imagine how
you'd like to solve the problem of modifying
some of your Animal classes to include Pet
behaviors.

Stop right now and think about it,
before you look at the next page where we
begin to reveal everything.

(thus rendering the whole exercise completely useless, robbing

you of your One Big Chance to burn some brain calories)

interfaces and

Let’s explore some design options
for reusing some of our existing
classes in a PetShop program.

On the next few pages, we’re going to walk through
some possibilities. We’re not yet worried about
whether Java can actually do what we come up with.
We’ll cross that bridge once we have a good idea of
some of the tradeoffs.

@ Option one
We take the easy path, and put pet

methods in class Animal. L
N ne 157 vere

Pros: Y“)(‘ 2 ato e R

. O .
All the Animals will instantly inherit g yeatarte
the pet behaviors. We won't have to \4/ foc ™
touch the existing Animal subclasses
at all, and any Animal subclasses Animal |

created in the future will also get to
take advantage of inheriting those
methods. That way, class Animal can
be used as the polymorphic type in
any program that wants to treat the
Animals as pets

Cons:

So... when was the last time you
saw a Hippo at a pet shop? Lion?
Wolf? Could be dangerous to give
non-pets pet methods.

Also, we almost certainly WILL
have to touch the pet classes
like Dog and Cat, because (in
our house, anyway) Dogs

and Cats tend to imple- Lion
ment pet behaviors

VERY differently.

219

modifying existing

@ Option two

We start with Option One, putting the pet methods
in class Animal, but we make the methods abstract,
forcing the Animal subclasses to override them.

Pros:

That would give us all the benefits of Option One, but with-
out the drawback of having non-pet Animals running around

with pet methods (like beFriendly()). All Animal classes Yu’c
would have the method (because it's in class Animal), but W \“‘Yc'v\k,a*i“"‘s J(,vat)o
because it's abstract the non-pet Animal classes won't -\m‘{\c""‘)c\\od dos
inherit any functionality. All classes MUST override the \[Yc’c we
methods, but they can make the methods “"do-nothings”.

| Animal |

Cons:

Because the pet methods in the Animal class are all
abstract, the concrete Animal subclasses are forced to
implement all of them. (Remember, all abstract methods
MUST be implemented by the first concrete subclass
down the inheritance tree.) What a waste of timel

You have to sit there and type in each and every

pet method into each and every concrete non-
pet class, and all future subclasses as well.
And while this does solve the problem of
non-pets actually DOING pet things
(as they would if they inherited pet
functionality from class Animal), the
contract is bad. Every non-pet

class would be announcing to the
world that it, oo, has those

pet methods, even though

the methods wouldn't

actually DO anything

when called.

This approach doesn't

look good at all. Tt just

seems wrong to stuff
everything into class Animal
that more than one Animal type
might need, UNLESS it applies to e
ALL Animal subclasses.

N

3
(4
A BT e A\

Ask me to be friendly.

wc’cmds

o, seriously... ask me.
I have the method.

220

interfaces and

® Option three
Put the pet methods ONLY in the
classes where they belong.

Pros:

No more worries about Hippos greeting you at the
door or licking your face. The methods are where
they belong, and ONLY where they belong. Dogs can

implement the methods and Cats can implement the ONLY in the
ekhods
methods, but nobody else has to know about them. % Puk the pet m’dn + can be ¥€
mema\ L\asscS -
Cons: ekead of n Ar

Two Big Problems with this approach. First off, you'd
have to agree to a protocol, and all programmers of
pet Animal classes now and in the future would have

to KNOW about the protocol. By protocol, we mean |
the exact methods that we've decided all pets should
have. The pet contract without anything to back it up.
But what if one of the programmers gets it just a tiny
bit wrong? Like, a method takes a String when it was
supposed to take an int? Or they named it doFriendly()
instead of beFriendly()? Since it isn't in a contract,
the compiler has no way to check you to see if you've
implemented the methods correctly. Someone
could easily come along to use the pet Animal
classes and find that not all of them work
quite right.

Animal |

And second, you don't get to use
polymorphism for the pet methods.
Every class that needs to use

pet behaviors would have to

know about each and every

class! In other words, -

you can't use Animal
as the polymorphic

type now, because the

compiler won't let you call

a Pet method on an Animal
reference (even if it's really a
Dog object) because class Animal
doesn't have the method.

221

multiple inheritance?

So what we REALLY need is:

Away to have pet behavior in just the pet classes

Away to guarantee that all pet classes have all of the same
methods defined (same name, same arguments, same return
types, no missing methods, etc.), without having to cross your
fingers and hope all the programmers get it right.

A way to take advantage of polymorphism so that all pets can have
their pet methods called, without having to use arguments, return
types, and arrays for each and every pet class.

It looks like we need TWO
superclasses at the top

X
new 3‘05)9‘:"3“6
\4 e
We ™™ Ned ¥77 1vnods
s“?"“’\asz\\)(,\\C Y ‘\/ ¢ - \\/ | / / -
‘5‘“-\ — | Pet | N | Animal
-

ds
+ now exten
ot frimal ks
P‘ND Pc‘b so it ¥
the methods ok b

The hon—?c{: Animals
don't have any inhevited

Pet stubf.

222

object lifecycle

Fireside Chats

Instance Variable

Id like to go first, because I tend to be more
important 1o 2 program than a Jocal variable.
I'm there to support an object, usually
throughout the object’s entire life. After all,
what’s an object without state? And what is
state? Values kept in instence variables.

No, don'’t get me wrong, I do understand your
role in a method, it's just that your life is so
short. So temporary. That’s why they call you
guys “temporary variables”.

My apologies. I understand completely.

I never really thought about it like that. What
are you doing while the other methods are
running and you're waiting for your frame to
be the top of the Stack again?

284 chapter9

Tonight's Talk: An instance variable and
a looal variable discuss life and death
(with remarkable civility)

Loocal Variable

I appreciate your point of view, and I certainly
appreciate the value of object state and all,
but I don’t want folks to be misled. Local
variables are really important. To use your
phrase, “After all, what's an object witbout
behavior™ And what is behavior? Algorithms
in methods. And you can bet your bits there'll
be some local variables in there to make those
algorithms work.

Within the local-variable community, the
phrase “temporary variable” is considered
derogatory. We prefer “local”, “stack”, “auto-
matic”, or "Scope~challénged”.

Anyway, it's true that we don’t bave a Jong
life, and it's not a particularly good life either.
First, we're shoved into a Stack frame with

all the other local variables. And then, if the
method we're part of calls another method,
another frame is pushed on top of us. And if
that method calls another method... and so on.
Sometimes we have to wait forever for all the
other methods on top of the Stack to com-
plete so that our method can run again.

Nothing. Nothing at all. It’s like being in
stasis—that thing they do to people in science
fiction movies when they have to travel long
distances. Suspended animation, really. We
just sit there on hold. As long as our frame is
sdll there, we're safe and the value we hold

is secure, but it’s a mixed blessing when our -

Instance Variable

We saw an educational video about it once.
Looks like a pretty brutal ending. I mean,
when that method hits its ending curly brace,
the frame is literally blown off the Stack! Now
that’s gotta hurt.

I live on the Heap, with the objects. Well, not
with the objects, actually in an object. The
object whose state I store. I have to admit life
can be pretty luxurious on the Heap. A lot of
us feel guilty, especially around the holidays.

OK, hypothetically, yes, if I'm an instance
variable of the Collar and the Collar gets
GC’d, then the Collar’s instance variables
would indeed be tossed out like so many pizza
boxes. But I was told that this almost never
happens.

They let us drink?

constructors and gc¢

Local Variable

frame gets to run again. On the one hand, we
get to be active again. On the other hand, the
clock starts ticking again on our short lives.
The more time our method spends running,
the closer we get to the end of the method.
We all know what happens then.

Tell me about it. In computer science they use
the term popped as in “the frame was popped
off the Stack”. That makes it sound fun, or
maybe like an extreme sport. But, well, you
saw the footage. So why don’t we talk about
you? I know what my little Stack frame looks
like, but where do you live?

But you don’t always live as long as the object
who declared you, right? Say there’s a Dog
object with a Collar instance variable. Imagine
you'’re an instance variable of the Collar object,
maybe a reference to a Buckle or something,
sitting there all happy inside the Collar object
who’s all happy inside the Dog object. But...
what happens if the Dog wants a new Collar,
or nulls out its Collar instance variable? That
makes the Collar object eligible for GC. So...
if you re an instance variable inside the Collar,
and the whole Collaris abandoned, what
happens to you?

And you believed it? That’s what they say to
keep us motivated and productive. But aren’t
you forgetting something else? What if you’re
an instance variable inside an object, and that
object is referenced only by a local variable? If
I’'m the only reference to the object you're in,
when I go, you’re coming with me. Like it or
not, our fates may be connected. So I say we
forget about all this and go get drunk while
we still can. Carpe RAM and all that.

you are hera »

265

	Intro
	1 Breaking the Surface: a quick dip
	2 A Trip to Objectville: yes, there will be objects
	3 Know Your Variables: primitives and references
	4 How Objects Behave: object state affects method behavior
	5 Extra-Strength Methods: flow control, operations, and more
	6 Using the Java Library: so you don’t have to write it all yourself
	7 Better Living in Objectville: planning for the future
	8 Serious Polymorphism: exploiting abstract classes and interfaces
	9 Life and Death of an Object: constructors and memory management
	10 Numbers Matter: math, formatting, wrappers, and statics
	11 Risky Behavior: exception handling
	12 A Very Graphic Story: intro to GUI, event handling, and inner classes
	13 Work on Your Swing: layout managers and components
	14 Saving Objects: serialization and I/O
	15 Make a Connection: networking sockets and multithreading
	16 Data Structures: collections and generics
	17 Release Your Code: packaging and deployment
	18 Distributed Computing: RMI with a dash of servlets, EJB, and Jini
	A Appendix A: Final code kitchen
	B Appendix B: Top Ten Things that didn’t make it into the rest of the book 659
Index

