

2 classes and objects

this is a new chapter 27

I was told there would be objects.

 A Trip to Objectville

We’re going to
Objectville! We’re

leaving this dusty ol’
procedural town for good.

I’ll send you a postcard.

once upon a time in Objectville

28 chapter 2

the spec

Chair Wars
(or How Objects Can Change Your Life)

the chair

At Brad’s laptop at the cafeIn Larry’s cube

 rotate(shapeNum) {

 // make the shape rotate 360º

 }

 playSound(shapeNum) {

 // use shapeNum to lookup which

 // AIF sound to play, and play it

 }
}

}

}

O

you are here4

classes and objects

29

There wil
l be an am

oeba shap
e

on the scr
een, with

the other
s.

When the
user click

s on the

amoeba, i
t will rota

te like the

others, an
d play a .h

if sound f
ile

But wait! There’s been a spec change.

Larry thought he’d nailed it. He could almost feel the rolled

steel of the Aeron beneath his...

what got added to the spec

Back in Larry’s cube

playSound(shapeNum) {
 // if the shape is not an amoeba,
 // use shapeNum to lookup which
 // AIF sound to play, and play it
 // else
 // play amoeba .hif sound
 }

At Brad’s laptop at the beach

Amoeba

rotate() {
 // code to rotate an amoeba
 }

playSound() {
 // code to play the new
 // .hif file for an amoeba
 }

once upon a time in Objectville

30 chapter 2

Ameoba r
otation po

int in Lar
ry

and Brad’
s version:

Where the
ameba ro

tation

point sho
uld be:

What the spec conveniently
forgot to mention

 1) determine the rectangle that surrounds the shape

 2) calculate the center of that rectangle, and rotate the shape around that point.

Larry snuck in just moments ahead of Brad.

Back in Larry’s cube

 rotate(shapeNum, xPt, yPt) {

 // if the shape is not an amoeba,

 // calculate the center point

 // based on a rectangle,

 // then rotate

 // else

 // use the xPt and yPt as

 // the rotation point offset

 // and then rotate

 }

 At Brad’s laptop on his lawn

chair at the Telluride Bluegrass Festival

Amoeba

int xPoint
int yPoint

rotate() {
 // code to rotate an amoeba
 // using amoeba’s x and y
 }

playSound() {
 // code to play the new
 // .hif file for an amoeba
 }

you are here4

classes and objects

31

So, Brad the OO guy got the chair, right?

What Larry wanted
(figured the chair would impress her)

They’re Shapes, and they all rotate and
playSound. So I abstracted out the
common features and put them into a
new class called Shape.

Shape

rotate()
playSound()

TriangleSquare Circle Amoeba

Shape

rotate()
playSound()

superclass

subclasses

Then I linked the other

four shape classes to

the new Shape class,

in a relationship called

inheritance.

Triangle

rotate()
playSound()

Square

rotate()
playSound()

Circle

rotate()
playSound()

I looked at what all four
classes have in common.

Amoeba

rotate()
playSound()

1

2

3

You can read this as, “Square inherits from Shape”,
“Circle inherits from Shape”, and so on. I removed
rotate() and playSound() from the other shapes, so now
there’s only one copy to maintain.

The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

once upon a time in Objectville

32 chapter 2

What about the Amoeba rotate()?

O

verride Now

Ask Me How

I made the Amoeba class override
the rotate() method of the
superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.

4

TriangleSquare Circle Amoeba

rotate()
// amoeba-specific
// rotate code

playSound()
// amoeba-specific
// sound code

Shape

rotate()
playSound()

superclass
(more abstract)

subclasses
(more specific)

Overriding methods

I can take
care of myself.
I know how an Amoeba

is supposed to rotate
and play a sound.

I know how a Shape is
supposed to behave. Your
job is to tell me what to

do, and my job is to make it happen.
Don’t you worry your little program-
mer head about how I do it.

I made the Amoeba class override
the rotate() and playSound()
methods of the superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.{

{

{

{

you are here4

classes and objects

33

metacognitive tip
If you’re stuck on an exercise, try talking about

it out loud. Speaking (and hearing) activates
a different part of your brain. Although it

works best if you have another person to
discuss it with, pets work too. That’s how

our dog learned polymorphism.

The suspense is killing me.

Who got the chair?

“It helps me design in a more natural way. Things
have a way of evolving.”
 -Joy, 27, software architect

“Not messing around with code I’ve already
tested, just to add a new feature.”
 -Brad, 32, programmer

“I like that the data and the methods that oper-
ate on that data are together in one class.”
 -Josh, 22, beer drinker

“Reusing code in other applications. When I write
a new class, I can make it fl exible enough to be
used in something new, later.”
 -Chris, 39, project manager

“I can’t believe Chris just said that. He hasn’t
written a line of code in 5 years.”
 -Daryl, 44, works for Chris

“Besides the chair?”
 -Amy, 34, programmer

What do you like about OO?

34 chapter 2

thinking about objects

ShoppingCart

cartContents

addToCart()
removeFromCart()
checkOut()

knows

does

Button

label
color

setColor()
setLabel()
dePress()
unDepress()

knows

does

Alarm

alarmTime
alarmMode

setAlarmTime()
setAlarm()
isAlarmSet()
snooze()

knows

does

When you design a class, think about the objects that

will be created from that class type. Think about:

things the object knows

things the object does

Things an object knows about itself are called

instance variables

Things an object can do are called

methods

Song

title
artist

setTitle()
setArtist()
play()

instance
variables
(state)

methods
(behavior)

knows

does

Think of instance as another way of saying object.

Sharpen your pencil

Alarm

alarmTime
alarmMode

setAlarmTime()
getAlarmTime()
isAlarmSet()
snooze()

knows

does

7 inheritance and polymorphism

Better Living in
Objectville

We were underpaid,

overworked coders 'fill we

tried the Polymorphism Plan. But

thanks to the Plan, our future is

bright. Yours can be tool

Plan your programs with the future in mind. If there were a way to write

Javacode such that you could take more vacations, how much would It be worth to you? What

if you could write code that someone elsecould extend, easily? And if you could write code

that was flexible, for those pesky last-minute spec changes, would that be something you're

interested In?Then this is your lucky day. ForJust three easypayments of 60 minutes time, you

can have all this. When you get on the Polymorphism Plan, you'll learn the 5 steps to better class

design, the 3 tricks to polymorphism, the 8 ways to make flexible code, and if you act now-a

bonus lesson on the 4 tips for exploiting inheritance. Don't delay,an offer this good will give

you the design freedom and programming flexlbll lty you deserve. It's quick. it's easy, and it's

available now. Start today, and we'll throw in an extra level of abstractionl

this is a new ch ap ter 16i

the power of inheritance

Chair Wars (evisited...
Rememberway back in chapter 2, when Larry (procedural guy)
and Brad (00 guy) werevyingfor the Aeron chair? Let's look at
(J few pieces of that story to review the basicsof~.

LARRY: You've got duplicated codel The rotate procedure
is in all four Shape things. It's a stupid design. You have [0

maintain four different rotate "methods". How can that
ever be good?

BRAD: Oh, I guess you didn't see the final design. Let me
show you how 00 inheritance works, Larry.

Square

rotateQ
playSoundO

rotateO
playSoundQ

Amoeba

rotate()
playSoundO

o
Ilooked at what all four
classes have I" OOIMIIIO".
~

rhev're Shapes, and theyall rotate and
plavSound. So IabstraGted out the
COIMIMon features and putthelllinto a
ttew class called Shape. -:;,

shape

rotateQ
playSound()

superclass
Shape

rotale()
playSoondO

You can read this as, uSquare Inheritsfrom Shape".
"Circle Inheritsfrom Shape", and soon. I removed
(olale() and playSound() from the other shapes, sonow

~here's only one copy tomaintain.

Th&.~hape class Is called the luperciasl of the other four
classes. The other four are the lubelaues ofShape. The
SUbclasses Inherit the methods of the superclass. Inother
words. Ifthe Shape class has the (unci/anality, then the
subclasses automatically gatfhat same functionality.

166 chapter 7

Square Circle Triangle

inheritance and polymorphism

What about theAIMoeba rotate()?

oShape

rotateQ
playSoundO

superolau
"MOre autract)

~

LARRY: Wasn't that the whole problem here - that the amoeba shape
had a completely diffe rent rotate and playSound procedure?

How can amoeba do something different if it inherits irs
functionality from the Shape class?

BRAD:That's the last step. The Amoeba class overrides the
methods of the Shape class. Then at runtime, theJVM knows
exactly which rota/eO method to run when someone tells the
Amoeba to rotate.

Square

lubclasses
"MOre speolflol

\ Circle Tilangle Amoeba

rotateO
/I amoeba-specific
/I rotate code

playSoundO
IIamoeba-speclfic
II sound code

'"!<" OverrldlnQ lMethods

How would you represent a house cat and a tiger. In an
inheritance structure. Is a domestic cat a specialized
version of a tiger? Which would be the subclass and
which would be the superclass? Or are they both
subclasses to some other class?

How would you design an Inheritance structure? What
methods would be overridden?

ThInk about It. Before you tu rn the page.

yo u are here ~ 167

I way inheritance works

Ut1derstat1dit1Q Inheritance
When you design with inheritance, you put common code in
a class and then tell other more specific classes that the
common (more abstract) class is their superclass. When one
class inherits from another, the subclass inherits frOID the
superclass.
InJava, we say that the subclass extends the superclass.
An inheritance relationship means that the subclass inherits
the lDelDbers of the superclass, When we say "members of
a class" we mean the instance variables and methods.
For example, if PantherMan is a subclass of SuperHero, the
PantherMan class automatically inherits the instance variables
and methods common to all superheroes including suit,
tights, specialPower, useSpecialPower () and
so on. But the PantherMan subclass can add new
:methods and instance variables of its own, and it can
override the :methods it inherits fro:m the superc1ass
SuperHero.

OverrldfttQ
!Methods
~

I"sta"ce varIables
(state. attributed

lMethods
(behavIor)

PantherMan

useSpeclalPowerij

putOnSultO

SuperHero

sul1
lights
spec/alPower

useSpecialPower()
putOnSull()

/~

FriadEggMan

superclasa
(tHore abstract)

~

FriedEggMan doesn't need any behavior that's unique,
so he doesn't override any methods. The methods and

instance variables in SuperHero are sufficient.
PanthenMan, though, has specific requirements for his suit
and special powers, so useSpecialPower () and
putOnSui t () are both overridden in the PantherMan
class.
Instance variables are not overridden because they
don't need to be. They don't define any special behavior, so a
subclass can give an inherited instance variable any value it
chooses. PantherMan can set his inherited tights (0

purple, while FriedEw\1an sets his to white.

subclasses
(tHore speolfle)

~
if. lJ,v4'

:;. t"
t(

~ chapter 7

inheritance and polymorphism

public class Doctor {

boolean worksAtHospita1i

void treatPatient() [
II perform a checkup

public class FamilyOoctor extends Doctor {

boolean makesHouseCallsi
void giveAdvice(} {

II give homespun advice

public class Surgeon extends Doctor(

void treatPatient () (
II perform surgery

void makeIncision() (
II make incision (yikes!)

superclass
your pencU

makesHouseCal1s

FamllyDoctor

glveAdvlce 0
Can eFamllyDoctor dolreatPatient()?__

Can a FamllyDoctor do rnakelneisloru)? __

How many instance variables does
Surgeon have7__

How many Inslance variables does
FamiryDoctor have7__

How many methods does Doctor have?__

How many methods does Surgeon have?_

How many methods does FamilyDoctor
have7 __

Adds one new
Instance variable

Adds one new method

OMe '"stattce variable

otte tMethod

Doctor

treatPatient 0

worksAlHosptlal

Surgeon

subclasses

Ovenides the Inherited
lrealPaUenlQ method lreatPatlenl ()

Adds one new method makelnclslonO

you are here ~ 169

Let"s desig" the it1heritattce tree for
att Atti~al sitltulatiot1 progralM
Imagine you're asked to design a simulation program that
lets the user throw a bunch ofdifferent animals into an
environment to see what happens. We don't have to code the
thing now, we're mostly interested in the design.

We've been given a list of someof the animals that will be
in the program, but not all. We know that each animal will
be represented by an object, and that the objects will move
around in the environment, doing whatever it is that each
particular type is programmed to do .

And we want other programmers to be able to add new
kinds ofanimals to the program at any time.

First we have to figure out the common, abstract
characteristics that all animals have, and build those
characteristics into a class that all animal classes can extend.

170 chapter 7

o Look for objects that have common
attributes and behaviors.

What do these six types have In
common? This helps you to abstract
out behaviors. (step 2)

How are the~ types related? This
helps you to define the Inheritance
tree relationships (step 4-5)

Usi.,g i.,herita.,ce to avoid
duplicatit1Q code it1 subclasses
We have five instance variables:

pidure- the file name representing theJPEG of this animal

food - the type offood this animal eats, Right now, there
can be only 1:\'10 values : meator grass.

hunger- an int representing the hunger level of the animal.
It changes depending on when (and how much) the
animal eats.

boundaries - values representing the height and width of
the 'space' (for example, 640 x 480) that the animals will
roam around in.

location> the X and Y coordinates for where the animal is
in the space.

We have four methods:

makeNoUe 0 - behavior for when the animal is supposed to
make noise.

eatO- behavior for when the animal encounters its
preferred food SOUTee, meat or grass.

skepO - behavior for when the animal is considered asleep.

roam() - behavior for when the animal is not eating or
sleeping (probably just wandering around waiting to bump
into a food source or a boundary) .

LIon

HIppo

Inheritance and polymorphism

Design a class that represents
the common state and behavior.

The~ objects are all animals, so
we'll make a common super-class
called Animal .

We'll put In methods and instance
variables that all animals might
need.

Animal

picture
food
hunger
boundaries
location

makeNoiseO
eatO
sleept)
roamt)

Wolf

Dog

you are here ~ 171

designing for inheritance

Po all at1httals eat the saIMe way?
Assume that we all agree on one thing: the instance
variables will work for aUAnimal types. A lion will
have his own value for picture, food (we're thinking
meat), hunger, boundaries, and location. A hippo
will have different values for his instance variables,
but he'll still have the same variables that the other
Animal types have. Same with dog, tiger, and so on.
Butwhatabout~h~~

Decide if a subclass
needs behaviors (method
implementations) that are specific
to that particular subclass type.

Animal

Which 'Methods should we override? looking at th£ Animal class,
w£ decide that eatQ and
makeNolseO should be overridden
by the Individual subclasses.

In the dog
community, barking is an

important part of our cultural
identity. We havea uniquesound,

and we want that diversity to
be recognized and respected.

sleepf)
roamO

picture
food
hunger
boundaries
location

Does a lion make the same noise as a dog? Does
a cat eat like a hippo? Maybe in youTversion, but
in ours, eating and making noise are Animal-type­
specific. We can't figure out how to code those
methods in such a way that they'd work for any
animal. OK, that's not true. We could write the
rnakeNoise() method, for example, so that all it does
is playa sound file defined in an instance variable
for that type, but that's not very specialized. Some
animals might make different noises
for different situations (like one
for eating, and another when
bumping into an enemy, etc.)

So just as with the Amoeba
overriding the Shape class rotateO
method, to get more amoeba-specific (in
other words, unique) behavior, we'll have
to do the same for our Animal subclasses.

172 chapter 7

Inheritance and polymorphism

Looklt1Q for more it1heritat1ce
opportut1itles e
The class hierarchy is starting to shape up. We
have each subclass override the makeNoise() and
eat() methods, so that there's no mistaking a Dog
bark from a Cat meow (quite insulting to both
parties). And a Hippo won't eat like a Lion.

But perhaps there's more we can do. We have to
look at the subclasses of Animal, and see if CWo
or more can be grouped together in some way,
and given code that's common to only that new
group. Wolf and Dog have similarities. So do
Lion, Tiger, and Cat.

Look for more opportunities to use
abstraction, by finding two or more
subclasses that might need common
behavior.

We look at our classes and see
that Wolf and Dog might have some
behavior In common, and the same goes
for Lion, Tiger, and Cat.

Animal

picture
food
hunger
boundaries
location

Wolf

Dog

mekeNolseO
eatO

·~IIIII!IIl"'_rlmakeNolseO
eatO

Hippo

makeNoiseO
eatO

Lion

you are here) 173

designing for inheritance

mamO

Animal

sleept)

picture
food
hunger
boundaries
location

makeNolseO
6810

Cat

makeNolseO
eatO

mem()

Finish the class hierarchy

Since animals already have an organizational
hierarchy (the whole kingdom, genus, phylum
thing), we can use the level that makes the most
sense for class design. We'll use the biological
"families" to organize the animals by making a
Feline class and a Canine class.

We decide that Canines could use a common
roomO method. because they tend to move In
packs. We also see that Felines could use a
common raamO method, because ther tend to
avoid others of their own kind. We'l let Hippo
continue to use Its Inherited roamO method­
the generic one It gds from Animal.
So we're done with the: deSign for now:
come back to It later In the chapter.

TIger

makeNolseO
eat()

makeNolseO
e.atO

Wolf

makeNolse()
eatO

makeNolseO
eatO

174 chapter 7

inheritance and polymorphism

Which tttethod Is called?
The Wolf class has four methods. One
inherited from Animal, one inherited from
Canine (which is actually an overridden
version ofa method in class Animal), and
two overridden in the Wolf class. When
you create a Wolf object and assign it to
a variable, you can use the dot operator
on that reference variable to invoke all
four methods. But which version of those
methods gets called?

When you call a method on an object
reference, you're calling the most specific
version of the method for that object type.

In other words, the lowest one wins!

"Lowest" meaning lowest on the
inheritance tree. Canine is lower than
Animal, and Wolf is lower than Canine,
so invoking a method on a reference
to a Wolf object means the JVM starts
looking first in the Wolf class. If the JVM
doesn't find a version of the method in
the Wolf class, it starts walking back up
the inheritance hierarchy until it finds a
match.

Canine

Anima'

Wolf

makeNolseO
eatO
sleepO
roarnr)

roamO

new Wolf () ;

w. sleep () ;

w.eat();

w .makeNoise () ;

w. roam () i

Wolf w =

talls t.he v~ion in Wol.f

tails t.he version in Wol.f

talls -the version in Ani...al

you are here ~ 175

practice designing an inheritance tree

suparclass
hMore abstract)~

~ L..:::..J
subelaases I ~
(lttore tpeolflol '\.

~ Box,," ~
Inheritance CIUlI Diagram

Sharpen your pencil

Inherftance Table

Class Superclasses Subclasses
Clothing -- Boxers, Shirt

Boxers Clothing

Shirt Clothing

PeslgttiMQ aM InherltaMce free

'-..: I l
~~ Draw an inheritance diagram here.

Find the relationships that make sense. Fill In the last two columns

Chus Superclasses Subclasses
Musician

Rock Star

Fan

Bass Player

Concert Pianist

Hint: noteverythIng can beconnected tosomething else.
Hint: you're allowed toaddtoorchange the cl8SSes listed.

therejltrer\l?
DUmb ~uesti9n.8

Q.: You said that the JVM starts
walking up the Inheritance tree,
starting at the class type you Invoked
the method on (like the Wolf example
on the previous pagel. But what
happens If the JVM doesn't ever find
ill match?

A.: Good questionl But you don't
have to worry about that.The compiler
guarantees that a particular method
Is callable for a specific reference type,
but It doesn 't say (or care) from which
class that method actually comes from
at runtime. With the Wolf example, the
compiler checks for a sleepf) method,
but doesn't care that sleepO Is actually
defined In (and Inherited from) class
Animal. Remember that If a class
Inherits a method, It has the method.

Where the inherited method Is defined
(In other words, In which superclass
It Is defined) makes no difference to
the complier. But at runtIme, the JVM
will always pick the right one. And
the right one means, the most specific
version for that particular object.

176 chapter 7

Inheritance and polymorphism

UsittQ IS...Aattd HAS-A

What if we reverse it to Bathroom
extends TUb? That still doesn't work.,
Bathroom IS-ATub doesn't work.

Tub and Bathroom are related, but
not through inheritance. Tub and
Bathroom are joined by a HAS-A
relationship. Does it make sense to
say "Bathroom HAS-ATUb"? Ifyes,
then it means that Bathroom has a
Tub instance variable. In other words,
Bathroom has a reference to a Tub, but
Bathroom does not extend1\lb and
vice-versa.

Remember that when one class
inherits from another, we say that the
subclass extends the superclass. When
you want to know if one thing should
extend another, apply the IS-A test,

Triangle IS-AShape, yeah, that works.

Cat IS-A Feline, that works too .

Surgeon IS-ADoctor, still good.

Tub extends Bathroom, sounds
reasonable.
UntilyO'u apply 1M IS-A test.

To know if you've designed your types
correctly, ask, "Does it make sense to
say type X IS-A type Y?" If it doesn't,
you know there's something wrong
with the design, so ifwe apply the IS-A
test, Tub IS-A Bathroom is definitely
false.

Does it make sense to

say a Tub IS-A Bathroom? Or a

Bathroom IS-A Tub? Well it doesn't to

me. The relationship between my Tub

and my Bathroom is HAS-A. Bathroom

HAS-A Tub. That means Bathroom

has Q Tub instance variable.

Bubbles
inl radius:
InloolorAm~

Tub
Inl size:
Bubbles b:Bathroom

Tub bathtub;
Sink lheSink;

Bathroom HAS-A Tub and Tub HAS-A Bubbles.
Bul nobody Inherits from (extends) anybody else.

you are here ~ 177

exploiting the power of objects

Jut wait! There"s 'More!
The IS-Atest works anywhere in the inheritance tree. If your
inheritance tree is well-designed, the IS-Atest should make
sense when you ask any subclass if it IS-A any of i IS su pertypes.

If class B extends class A, class B IS-A class A.

This is true anywhere in the inheritance tree. If
class C extends class B, class C passes the IS-A
test for both Band A.

178 chapter 7

Canine extends Animal

Wolf extends Canine

Wolf extends Animal

Canine IS-A Animal

Wolf IS-A CanIne

Wolf IS-A Animal

Animal

makeNolseO
eatO
sleepO
roamO

Canine

roarnt)

Wolf

makeNolseO
eal()

With an inheritance tree like the
one shown here, you're always
allowed to say "Wolf extends
Animal" or "Wolf IS-AAnimal".
It makes no difference ifAnimal
is the superc1ass of the superclass
ofWolf. In fact, as long as Animal
is somewhere in the inheritance
hierarchy above Wolf, Wolf IS-A
Animal will always be true.

The structure of the Animal
inheritance tree says to the world:

"Wolf IS-A Canine. so Wolf can do
anything a Canine can do. And
Wolf IS-AAnimal, so Wolf can do
anything an Animal can do."

It makes no difference if Wolf
overrides some of the methods
in Animal or Canine. As far as
the world (of other code) is
concerned, a Wolf can do those
four methods. H(JlJ) he does them,
or in which class they 1'e overridden
makes no difference. A Wolf can
makeNoise O. ea to, sleep (), and
roamO because a Wolf extends
from class Animal.

How do you k"ow if yotfve got
your htherita"ce right?
There's obviously more to it than what we've
covered so far, but we'll look at a lot more 00
issues in the next chapter (where we eventually
refine and improve on some of the design work
we did in thischapter) .

For now. though, a good guideline is to use the
IS-Atest, U "X IS-AY" makes sense, both classes
(X and Y) should probably live in the same
inheritance hierarchy. Chances are, they have
the same or overlapping behaviors.

Keep in mind that the
inheritance IS-A relationship
works in only one directionl
Triangle IS-AShape makes sense, so you can
have Triangle extend Shape.

But the reverse-Shape IS-ATriangle-does
not make sense, so Shape should not extend
Triangle. Remember that the IS·A relationship
implies that ifX IS-A y. then X can do anything
a Y can do (and possibly more).

Inheritance and polymorphism

I letsare blUe. . 't true.
Roses are red, v 0 the reverse lsn

""a is-aShape,
SqU- d r

d laletS are ell. beer.
Roses are re I v t 01/ drinks are

Ink but no e-
Beer is-a Dr, '" t shOWS the on 'f

M Ke one t"a . Remember. \
QI(, your turr\e~S_A relatiOnshlP~ense,
way.nesS of~ 'S.A'(must maKe

'/.. extend_s_'(I_ ------"..........--~"........-

Sharpen your pencil------,

Put a check next to the relationships that
make sense.

o Oven extends KItchen

o Guitar extends Instrument

o Person extends Employee

o Ferrari extends EngIne

o FriedEgg extends Food

o Beagle extends Pet

o Container extends Jar

o Metal extends Titanium

o GratefulDead extends Band

o Blonde extends Smart

o Beverage extends Martini

Hint apply the IS-A test

you are here ~ 179

who inherits what

therelllreAl~Dum D "<.,uesD9ns
Q: SOwe see how a subclass gets
to Inherlt a superclass method, but
what If the su perclass wants to use
the subclass version of the method1

A.: A superclass won't necessarily
knowabout any of its subclasses .
You might write a class and much
later someone else comes along and
extends it. But even Ifthe superclass
creator does know about (and wants
to use) a subclass version of a method,
there's no sort of reverse or backwards
inheritance. Think about it,children
Inherit from parents, not the other way
around.

Q: In a subclass, what if I want to
use BOTHthe superclass version and
my overriding subclass version of a
method? In other words, I don't want
to completely rep/Dee the superclass
version, I Just want to add more stuff
to It.

A:vou can do this! And It's an
important design feature .Thinkof the
word "extends" as meaning,"1 want
to extend the functionality of the
superclass"

public void roamC)
super. roam C) ;

/ / my own roam

You can design your superclass
methods in such a way that they
contain method implementat ions
that will work for any subclass, even
though the subclasses may still need
to 'append' more code . Inyour subclass
overriding method, you can call the
superclass version using the keyword
super. It's like saying,"first go run the
superclass version. then come back and
finish with my own code ..,"

Who gets the Porsche, who gets the porcelah,?
(how to kt'ow whata subclass cat'
Itt"erlt frolM Its superelassJ

A subclass inherits members of the
superclass. Members include instance
variables and methods, although later in
this book we'Dlook at other inherited members. A
superclass can choose whether or not it wants a
subclass to inherit a particular member by the level of
access the particular member is given.

There are four access levels that we'D cover in this book.
Moving from most restrictive to least , the four access
levels are:

private default protected public

180 chapter 7

Access levels control who sees what, and are crucial
to having well-designed, robustJava cod e. For now we'll
focus just on public and private. The rules are simple for
those two:

public members are Inherited--private members are~ Inherited

When a subclass inherits a member, it is as if the
subclass defined the -member itself. In the Shape
example, Square inherit ed the rotate () and
playSound () methods and to the outside world (othe r
code) the Square class simply has a rota te () and
playSound () method .
The members of a class include the vari ables and
methods defined in the class plu s anything inherited
from a superclass.

No-«: get ..O\"C ddails about dc+alAlt and fl"ot.et.ud in 'h4y-W­
Ib (dcrl0't"cnV and .li'fcNli'J< B.

When designing with inheritance,
are you usit1g or abusi"g?
Although some of the reasons behind these rules won't be
revealed until later in this book, for now, simply knowing a
few rules will help you build a better inheritance design.

DO use inheritance when one class is a more specific type
ofa superclass. Example: WIllow is a more specific type of
Tree, so Willow extends Tree makes sense.

DO consider inheritance when you have behavior
(implemented code) that should be shared among
multiple classes of the same general type. Example:
Square, Circle, and Triangle all need to rotate and play
sound, so putting that functionality in a superclass Shape
might make sense, and makes for easier maintenance and
extensibility. Be aware, however, that while inheritance is
one of the key features of object-oriented programming,
it's not necessarily the best way to achieve behavior reuse.
It'll get you started, and often it's the right design choice,
but design panerns will help you see other more subtle
and flexible options. !fyou don't know about design
patterns, a good follow-on to this book would be HeadFirst
Design Patterns.

DO NOT use inheritance just so that you can reuse
code from another class, if the relationship between the
superclass and subclass violate either of the above two
rules. For example, imagine you wrote special printing
code in the Alarm class and now you need printing code
in the Piano class, so you have Piano extend Alarm so that
Piano inherits the printing code. That makes no sense! A
Piano is rwt a more specific type ofAlarm. (So the printing
code should be in a Printer class, that all printable objects
can take advantage ofvia a HAS-A relationship.)

DO NOT use inheritance if the subclass and superclass
do not pass the IS-A test, Always ask yourself if the subclass
IS-A more specific type of the superclass. Example: Tea IS­
A Beverage makes sense. Beverage IS-ATea does not.

Inheritance and polymorphism

• Asubclass extends asuperclass.

• Asubclass Inherits allpublic Instance
variables and methods ofthe superclass, but
does not Inherit the private Instance variables
and methods ofthe superdass,

• Inherited methods can be overridden; instance
vartables cannot beoverridden (although they
can be redefined in the subclass, but that's
not the same thing, and there's almost never a
need todo it)

• Use the IS-A test toverify thaiyour
inheritance hierarchy is valid. If Xextends Y,
then X IS-A Ymust make sense.

• The rS-A relationship works Inonly one
direction. AHippo isanAnimal. but not all
Animals are Hippos.

• When a method isoverridden ina subclass,
and that method isInvoked on an instance of
the subclass, the overridden version of the
method is called. (The lowest one wins.)

• Ifclass Bextends A, and Cextends B, class
BIS-A class A, and class C IS-A class e, and
class Calso IS-A class A.

you are here) 181

exploiting the power of objects

So what does all this
h1herita"ce really buy you?
You get a lot of 00 mileage by designing
with inheritance. You can get rid of duplicate
code by abstracting out the behavior common
to a group of classes, and sticking that code
in a superclass. That way, when you need to
modify it, you have only one place to update,
and the changeis magically reflected in all the
classes that inherit that behavior. Well, there's
no magic involved, but it is pretty simple:
make the change and compile the class
again. That's it. You don't have to touch the
subclasses I

Jmt deliver the newly-ehanged superclass, and
all classes that extend it will automatically use
the new version.

AJava program is nothing but a pile of classes,
so the subclasses don't have to be recompiled
in order to use the new version of the
superclass, As long as the superclass doesn't
break anything for the subclass, everything's
fine. (We'll discuss what the word 'break'
means in this context, later in the book. For
now, think of it as modifying something in
the superclass that the subclass is depending
on, like a particular method's arguments or
return type, or method name, etc.)

182 chapter 7

(i) You avoid duplicate
code.
Put common code in one place, and let

the subclasses inherit that code from a

superclass . When you want to change that

behavior, you have to modify it in only

one place, and everybody else (i.e, all the

subclasses) see the change.

• You define a common
protocol for a group of
classes.

lt1heritat1ce lets you guarat1tee that
all classes grouped ut1der a certaht
supertype have all the Ittethods that
the supertype has:
I., other words. you defl"~ a oOttUMO" protocol for a
setofclasses related through I"herita"ce,

When you define methods in a superclass, that can be
inherited by subclasses, you're announcing a kind of
protocol to other code that says, "All my subtypes (i.e,
subclasses) can do these things, with these methods
that look like this .;"

In other words, you establish a contract:

Class Animal establishes a common protocol for all
Animal subtypes:

Anlm.1

makeNolse()
eatO
sleepO
roamO

And remember, when we say any AlIima~ we mean
Animal and any classthat extendsfrom Animal Which
again means, any class tha: has Animal SO"TTIeWhere aboue it
in the inheritancehierarchy,

But we're not even at the really cool part yet, because
we saved the best--polymarphism--for last

When you define a supertype for a group of classes,
any subclass 0/that supmype can besubstituted where the
supertype is expected.

Say, what?

Don 't worry. we're nowhere near done explaining it
Two pages from now, you'll be an expert

"When wesay "all the methods' we mean "alilhe Inheritable methods',which
fornow actually means, "all the public methods', although later we'll refine that
defini\Jon abitmore.

Inheritance and polymorphism

And I care because•••

Because you get to take advantage of
polymorphism.

Which matters to me
because•••

Because you get to refer to a subclass
object using a reference declared as the
supertype.

And that means to me•••

You get to write really flexible code.
Code that's cleaner (more efficient,
simpler). Code that's not just easier to
develop, but also much, much easier to
extend, in ways you never imagined at
the time you originally wrote your code.

That means you can take that tropical
vacation while your co-workers update
the program, and your co-workers might
not even need your source code.

You'll see how it works on the next page,

We don't know about you, but
personally, we find the whole
tropical vacation thing
particu Iarly motivating.

you are here. 183

Keepl.,g the co"tract: rules for overriding

Appliance

boolean bJmOnO

boolean bJmOffO

Toaster

boolean tumOn(~lleveD

I

Arguments must be the same, and return
types must be compatible.

When you override a method from a supercIass, you 're agreeing to
fulfill the contract. The contract that says. for example, ~I take no
arguments and I return a boolean ." In other words, the arguments
and return types of your overriding method must look to the outside
world exactly like the overridden method in the superclass.

The methods are the contract.

If polymorphism is going to work. the Toaster's version of the
overridden method from Appliance has to work at runtime.
Remember. the compiler looks at the reference type to decide
whether you can call a particular method on that reference. Wilh
an Appliance reference to a Toaster, the compiler cares only if class
Appliance has the method you 're invoking on an Appliance reference .
But at runtime, thejVM looks not at the reference type (Appliance) but
at the actual Toaster object on the heap. So if the compiler has already ~

approved the method call, the only way it can work is if the overriding "This \~ 1'./01 6"

method has the same arguments and return types. Otherwise. '1t:Y""'\dt~

someone with an Appliance reference will call turn On 0 as a no- o. h6 e \)Ie
arg method, even though there's a version in Toaster that takes an ta" \:. t. b~" 61\

int. Which one is called at runtime? The one in Appliance. In other ~\WI'.~~e-t.n06. .
words, the turnOn{int level) m.etJwd in Toaster is not an override.' O~~I ThIs j! .t,i:.ua/ly .a Je5d1

overLOAD b· i .Lolle"rRIDE. I ""l; "()l:. an

The contract of superclass defines how other code can use a method.
Whatever the superclass takes as an argument. the subclass over­
riding the method must use that same argument. And whatever the
superclass declares as a retum type. the overriding method must de­
clare either the same type. or a subclass type . Remember, a subclass
object is guaranteed to be able to do anything its superclass declares.
so iI's safe to retum a subclass where the superclass Is expected.

• The method can't be less accessible.
That means the access level must be the same, or friendlier. That
means you can't, for example, override a public method and make
It private. What a shock that would be to the code invoking what It
thinks (at compile time) is a public method. If suddenly at runtime
the JVM slammed the door shut because the overriding version
called at runtime Is prlvatel

So far we've leamed about two access levels : private and public .
The other two are In the deployment chapter (Release your Code)
and appendix B. There's also another rule about overriding related
to exception handling , but we'll walt until the chapter on exceptions
(Risky Behavior) to cover thaI.

Appliance

pUblic boolean tumOnO

public boolean tumOnO

Toaster

privata boolean bJmOnO
\

190 chapter 7

214 chapter 8

new Snowboard()

Get in touch with your inner Object.

There is only ONE object on the heap here. A Snowboard
object. But it contains both the Snowboard class parts of
itself and the Object class parts of itself.

objects are Objects

Object

equals()

getClass()

hashCode()

toString()

Snowboard

equals()

getClass()

hashCode()

toString()

turn()

shred()

getAir()

loseControl()

Snowboard inherits methods
from superclass Object, and
adds four more.

to
St

rin
g() hashCode()

getA
ir()

turn()

sh
re

d()

equals()
getClass

()

loseContro
l(

)

Object

Snowboard

Snowboard object

He treats me like an
Object. But I can do so

much more...if only he’d see
me for what I really am.

A single object
on the heap.

interfaces and polymorphism

you are here4 215

Snowboard s = new Snowboard();
Object o = s;

to
St

rin
g() hashCode()

getA
ir()

turn()

sh
re

d()

equals()
getClass

()

loseContro
l(

)
Object

Snowboard

The Object reference can see only the
Object parts of the Snowboard object.
It can access only the methods of class
Object. It has fewer buttons than the
Snowboard remote control.

o

s

The Snowboard remote control
(reference) has more buttons than
an Object remote control. The
Snowboard remote can see the full
Snowboardness of the Snowboard
object. It can access all the methods
in Snowboard, including both the
inherited Object methods and the
methods from class Snowboard.

Snowboard object

‘Polymorphism’ means
‘many forms’.

You can treat a Snowboard as a
Snowboard or as an Object.

When you put
an object in an
ArrayList<Object>, you
can treat it only as an
Object, regardless of
the type it was when
you put it in.

When you get a
reference from an
ArrayList<Object>, the
reference is always of
type Object.

That means you get an
Object remote control.

fewer methods here...

218 chapter 8

What if you need to change

the contract?

Think about what YOU would do if YOU were
the Dog class programmer and needed to
modify the Dog so that it could do Pet things,
too. We know that simply adding new Pet be-
haviors (methods) to the Dog class will work,
and won’t break anyone else’s code.

But... this is a PetShop program. It has more
than just Dogs! And what if someone wants
to use your Dog class for a program that has
wild Dogs? What do you think your options
might be, and without worrying about how
Java handles things, just try to imagine how
you’d like to solve the problem of modifying
some of your Animal classes to include Pet
behaviors.

Stop right now and think about it,
before you look at the next page where we
begin to reveal everything.

(thus rendering the whole exercise completely useless, robbing

you of your One Big Chance to burn some brain calories)

modifying a class tree

interfaces and polymorphism

you are here4 219

Let’s explore some design options

for reusing some of our existing

classes in a PetShop program.

We take the easy path, and put pet
methods in class Animal.

1 Option one

All the Animals will instantly inherit
the pet behaviors. We won’t have to
touch the existing Animal subclasses
at all, and any Animal subclasses
created in the future will also get to
take advantage of inheriting those
methods. That way, class Animal can
be used as the polymorphic type in
any program that wants to treat the
Animals as pets

Pros:

So... when was the last time you
saw a Hippo at a pet shop? Lion?
Wolf? Could be dangerous to give
non-pets pet methods.

Also, we almost certainly WILL
have to touch the pet classes
like Dog and Cat, because (in
our house, anyway) Dogs
and Cats tend to imple-
ment pet behaviors
VERY differently.

Cons:

Tiger

Animal

Canine

Hippo

Dog

Wolf
Cat

Lion

Feline

put a
ll the

 pet

method
 code

 up h
ere

for i
nheri

tance
.

220 chapter 8

We start with Option One, putting the pet methods
in class Animal, but we make the methods abstract,
forcing the Animal subclasses to override them.

2 Option two

That would give us all the benefi ts of Option One, but with-
out the drawback of having non-pet Animals running around
with pet methods (like beFriendly()). All Animal classes
would have the method (because it’s in class Animal), but
because it’s abstract the non-pet Animal classes won’t
inherit any functionality. All classes MUST override the
methods, but they can make the methods “do-nothings”.

Pros:

Because the pet methods in the Animal class are all
abstract, the concrete Animal subclasses are forced to
implement all of them. (Remember, all abstract methods
MUST be implemented by the fi rst concrete subclass
down the inheritance tree.) What a waste of time!
You have to sit there and type in each and every
pet method into each and every concrete non-
pet class, and all future subclasses as well.
And while this does solve the problem of
non-pets actually DOING pet things
(as they would if they inherited pet
functionality from class Animal), the
contract is bad. Every non-pet
class would be announcing to the
world that it, too, has those
pet methods, even though
the methods wouldn’t
actually DO anything
when called.

This approach doesn’t
look good at all. It just
seems wrong to stuff
everything into class Animal
that more than one Animal type
might need, UNLESS it applies to
ALL Animal subclasses.

Cons:

Tiger

Animal

Canine

Hippo

Dog

Wolf
Cat

Lion

Feline

put a
ll the

 pet
method

s

up he
re, bu

t with n
o

implementat
ions.

Make a
ll

pet m
ethod

s abs
tract

.

Ask me to be friendly.
No, seriously... ask me.

I have the method.

modifying existing classes

interfaces and polymorphism

you are here4 221

Put the pet methods ONLY in the
classes where they belong.

3 Option three

No more worries about Hippos greeting you at the
door or licking your face. The methods are where
they belong, and ONLY where they belong. Dogs can
implement the methods and Cats can implement the
methods, but nobody else has to know about them.

Pros:

Two Big Problems with this approach. First off, you’d
have to agree to a protocol, and all programmers of
pet Animal classes now and in the future would have
to KNOW about the protocol. By protocol, we mean
the exact methods that we’ve decided all pets should
have. The pet contract without anything to back it up.
But what if one of the programmers gets it just a tiny
bit wrong? Like, a method takes a String when it was
supposed to take an int? Or they named it doFriendly()
instead of beFriendly()? Since it isn’t in a contract,
the compiler has no way to check you to see if you’ve
implemented the methods correctly. Someone
could easily come along to use the pet Animal
classes and fi nd that not all of them work
quite right.

And second, you don’t get to use
polymorphism for the pet methods.
Every class that needs to use
pet behaviors would have to
know about each and every
class! In other words,
you can’t use Animal
as the polymorphic
type now, because the
compiler won’t let you call
a Pet method on an Animal
reference (even if it’s really a
Dog object) because class Animal
doesn’t have the method.

Cons:

Put the pe
t methods ONLY in the

Animal classes
that can

be pets,

instead of
 in Animal.

Tiger

Animal

Canine

Hippo

Dog

Wolf
Cat

Lion

Feline

222 chapter 8

So what we REALLY need is:

Æ A way to have pet behavior in just the pet classes

Æ A way to guarantee that all pet classes have all of the same
methods defined (same name, same arguments, same return
types, no missing methods, etc.), without having to cross your
fingers and hope all the programmers get it right.

Æ A way to take advantage of polymorphism so that all pets can have
their pet methods called, without having to use arguments, return
types, and arrays for each and every pet class.

Tiger

Animal

Canine

Hippo

Dog

WolfCat Lion

Feline

Pet

It looks like we need TWO
superclasses at the top

We make a
 new abst

ract

super
class

called
 Pet, a

nd

give i
t all

the p
et m

ethod
s.

Cat now extends

from both Animal

AND Pet, so it g
ets

the methods of
both.

Dog extends both
Pet and Animal

The non-pet Animals

don’t have any inherited

Pet stuff.

multiple inheritance?

object lifecycle

Fireside Chats

~4
~

Tonight'g Talk: An instance variable and
a looal variable discuss life and death
(wi~ remarkable civilliy)

Instance Variable
I'd like to go first, because I tend to be more
important to a program than a local variable.
I'm there to support an object, usually
throughout the object's entire life. After all,
what's an object without slate? And what is
state? Values kept in instana variables.

No, don't get me wrong, I do understand your
role in a method, it 's just that your life is so
short. So temporary. That's why they call you
guys "temporary variables".

My apologies. I understand completely.

I never really thought about it like that. What
are you doing while the other methods are
running and you're waiting for your frame to
be the top of the Stack again?

264 chapte r 9

Local Variable

I appreciate your point ofview, and I certainly
appreciate the value of object state and all,
but I don't want folks to be misled. Local
variables are really important. To use your
phrase, "After all, what's an object without
behaviorr" And what is behavior? Algorithms
in methods. And you can bet your bits there'll
be some localvariables in there to make those
algorithms work.

Within the local-variable community, the
phrase "temporary variable" is considered
derogatory. We prefer "local", "stack" , "auto­
matic", or "Scope-challenged",

Anyway, it's true that we don't have a long
life, and it's not a particularly good life either.
First, we're shoved into a Stack frame with
all the other local variables, And then, if the
method we're part of calls another method,
another frame is pushed on top of us. And if
that method calls another method... and so on.
Sometimes we have to wait forever for all the
other methods on top of the Stack to com­
plete so that our method can run again.

Nothing. Nothing at all. It's like being in
stasis-that thing they do to people in science
fiction movies when they have to travel long
distances. Suspended animation, really. We
just sit there on hold. As long as our frame is
still there, we're safe and the value we hold
is secure, but it's a mixed blessing when our .

IDstance Variable

We saw an educational video about it once.
Looks like a pretty brutal ending. I mean,
when that method hits its ending curly brace,
the frame is literally blownoff the Stack! Now
that 'sgotta hurt.

I live on the Heap, with the objects. Well, not
with the objects, actually in an object. The
object whose state I store. I have to admit life
can be pretty luxurious on the Heap. A lot of
us feel guilty, especially around the holidays.

OK, hypothetically, yes, if I'm an instance
variable of the Collar and the Collar gets
GC'd, then the Collar's instance variables
would indeed be tossed out like so many pizza
boxes. But I was told that this almost never
happens.

They let us drink?

constructors and gc

Local Variable

frame gets to run again. On the one hand, we
get to be active again. On the other hand, the
clock starts ticking again on our short lives.
The more time our method spends running,
th e closer we get to the end of the method.
We all know what happens then.

Tell me about it. In computer science they use
the term poppedas in "the frame was popped
off the Stack". That makes it sound fun , or
maybe like an extreme sport. But, well, you
saw the footage. So why don't we talk about
you? I know what my little Stack frame looks
like, but where do you live?

But you don't always live as long as the object
who declared you, right? Say there's a Dog
object with a Collar instance variable. Imagine
you'rean instance variable of the Collarobject,
maybe a reference to a Buckle or something,
sitting there all happy inside the Collarobject
who's all happy inside the Dogobject. But...
what happens if the Dog wants a new Collar,
or nulls out its Collar instance variable? That
makes the Collar object eligible for GC. So...
if you 're an instance variable inside the Collar,
and the whole Collaris abandoned, what
happens to you?

And you believed it? That's what they say to
keep us motivated and productive. But aren 't
you forgetting something else? What if you 're
an instance variable inside an object, and that
object is referenced only by a localvariable? If
I'm the only reference to the object you're in,
when I go, you're coming with me. Like it or
not, our fates may be connected. So I say we
forget about all this and go get drunk while
we still can. Carpe RAM and all that.

you are here ~ 265

	Intro
	1 Breaking the Surface: a quick dip
	2 A Trip to Objectville: yes, there will be objects
	3 Know Your Variables: primitives and references
	4 How Objects Behave: object state affects method behavior
	5 Extra-Strength Methods: flow control, operations, and more
	6 Using the Java Library: so you don’t have to write it all yourself
	7 Better Living in Objectville: planning for the future
	8 Serious Polymorphism: exploiting abstract classes and interfaces
	9 Life and Death of an Object: constructors and memory management
	10 Numbers Matter: math, formatting, wrappers, and statics
	11 Risky Behavior: exception handling
	12 A Very Graphic Story: intro to GUI, event handling, and inner classes
	13 Work on Your Swing: layout managers and components
	14 Saving Objects: serialization and I/O
	15 Make a Connection: networking sockets and multithreading
	16 Data Structures: collections and generics
	17 Release Your Code: packaging and deployment
	18 Distributed Computing: RMI with a dash of servlets, EJB, and Jini
	A Appendix A: Final code kitchen
	B Appendix B: Top Ten Things that didn’t make it into the rest of the book 659
Index

